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Abstract

We consider the problem of pricing a contingent claim whose payoff depends on several
sources of uncertainty. Using classical assumptions from the Arbitrage Pricing Theory, the
theoretical price can be computed as the discounted expected value of future cash flows
under the modified risk-neutral information process. Although analytical solutions have
been developed in the literature for a few particular option pricing problems, computing the
arbitrage prices of securities under several sources of uncertainty is still an open problem in
many instances. In this paper, we present efficient numerical techniques based upon Monte
Carlo simulation for pricing European contingent claims depending on an arbitrary number
of risk sources. We introduce in particular the method of quadratic resampling (QR), a new
powerful error reduction technique for Monte Carlo simulation. Quadratic resampling can be
efficiently combined with classical variance reduction methods such as importance sampling
to further improve the accuracy of the estimate. Our numerical experiments show that the
method is practical for pricing claims depending on up to one hundred underlying assets.
We also describe an implementation of the method on a massively parallel supercomputer,
yielding two orders of magnitude of performance improvement over the same implementation
on a desktop workstation.

Résumé

Nousétudions le probl`eme de l’évaluation d’un actif conditionnel dont la valeur d´epend de
plusieurs sources de risque. Avec les hypoth`eses classiques de la th´eorie de l’arbitrage, le prix
théorique peut ˆetre calculé comme l’esp´erance math´ematique actualis´ee des flux financiers
futurs pour le processus modifi´e neutre vis-`a-vis du risque. Bien que des solutions analytiques
existent pour certains probl`emes particuliers d’´evaluation d’options, l’´evaluation num´erique
du prix d’arbitrage des actifs multidimensionnels reste un probl`eme ouvert `a ce jour dans de
nombreux cas. Nous proposons des techniques num´eriques efficaces bas´ees sur la m´ethode de
Monte Carlo pour calculer le prix d’actifs Europ´eens d´ependants d’un nombre arbitraire de
sources de risque. Nous introduisons en particulier la m´ethode du r´eechantillonnage quadratique
(RQ), nouvelle technique puissante de r´eduction d’erreur pour la simulationde Monte Carlo. Le
réechantillonnage quadratique peut ˆetre combin´e avec les m´ethodes classiques de r´eduction de
variance telles que l’´echantillonnage par importance pour r´eduire encore l’erreur d’estimation.
Les résultats exp´erimentaux montrent l’efficacit´e de cette approche pour ´evaluer des actifs
conditionnels d´ependants d’une centaine d’actifs sous-jacents. Nous pr´esentons aussi une
implantation de la m´ethode sur une machine massivement parall`ele, permettant de gagner deux
ordres de grandeur en vitesse de calcul par rapport `a une implantation sur station de travail.
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Numerical Valuation of High Dimensional Multivariate European Securities 1

1 Introduction

1.1 Background

Since the seminal work of Black and Scholes [Black and Scholes, 73] and Merton [Merton, 73]
in the early 1970s, the arbitrage principle underlying option valuation theory has been extended
to a broad range of other financial instruments (see e.g. [Ross, 76], [Cox and Rubinstein, 85]).
Indeed, any security whose returns are contractually related to the returns on some other
security or group of securities can theoretically be valuated using the same arbitrage principle.
This is the case in particular of warrants, convertible bonds, but also common stocks,
ordinary bonds, and most other types of contractual instruments. In some cases, explicit
closed form analytical formulas for the computation of the arbitrage price can be derived
from this theory. In particular, the original paper of Black and Scholes provides a closed
form solution for a European option on a single common stock. Unfortunately, few other
cases can be solved analytically, and computing the arbitrage price often requires numerical
simulations. Following an idea initially presented in an early edition of [Sharpe, 85], Cox,
Ross, and Rubinstein [Cox, Ross, and Rubinstein, 79] [Cox and Rubinstein, 85] developed a
discrete model for the valuation of an American option on a single stock that can be easily
computed numerically. However, the effective implementation of the arbitrage principle is
not always such an easy task, and may sometimes become intractable. For example, when a
contingent claim depends on many sources of uncertainty, there is no known general tractable
algorithm for computing accurately the arbitrage price.

1.2 Multidimensional pricing models

There are several reasons motivating the development of efficient methods for multidimensional
contingent claim pricing. We briefly review some of them below, but the list is certainly not
exhaustive. The tremendous development of financial engineering during the past decade can
be expected to continue, and new types of securities requiring multidimensional modeling are
likely to appear at a sustained pace in the future.

� Complex Over The Counter warrants

Many instruments depending on several underlying securities are being proposed on
Over The Counter markets. One can buy options on the best performance of several
securities, or on the spread between different market indexes. In foreign exchange
markets, complex instruments are being proposed that enable investors to diversify their
portfolios internationally while protecting them from the relative variations of several
different currencies. In commodity markets, long-dated options on portfolios of futures
contracts with various maturities are being proposed to protect investors from long term
evolutions of the underlying commodity and of its convenience yield.

� Path-dependent instruments
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2 Jérôme Barraquand

Specialized institutions are now proposing options that depend not only on the current
value of the underlying asset, but on the whole history of underlying asset prices
until expiration date. Well known examples are lookback options (e.g. options on the
minimum value of the underlying for a given period of time), and Asian options (e.g.
options on the average value of the underlying for a given period of time). These
path-dependent instruments can be viewed as multidimensional contingent claims on
the sequence of underlying asset prices until the expiration date. Other examples of
path-dependent instruments are Mortgage-Backed Securities (MBS), which depend on
the past history of interest rates, and certain life insurance contracts, such as Single
Premium Deferred Annuities (SPDA) and Guaranteed Interest Contracts (GIC).

� Interest rate related instruments

A new generation of term structure models [Heath, Jarrow, and Morton, 92] has recently
been developed. These models can account for non-parallel evolutions of the term
structure, i.e. discrepancies in the evolutions of short and long-term rates. According to
these models, the whole term structure of interest rate is a multidimensional underlying
asset for interest rate contingent claims. Examples of interest rate contingent claims
include all kinds of fixed-income securities such as bonds and convertible bonds, bond
options, swaps, caps, floors, collars, swaptions, but also mortgage-backed securities and
SPDAs [Fabozzi, 87].

� Models with stochastic parameters

Is is well known that the volatility of the underlying asset cannot be assumed constant
for long-term options. Recently, new option pricing models have been developed that
attempt to take into account the stochastic nature of volatility (see e.g. [Wiggins, 87],
[Dothan, 87], [Hull and White, 88]). In these models, the option price depends on two
sources of uncertainty: the underlying asset itself, and its volatility. Similarly, the
interest rates cannot be assumed constant for a long period of time. Therefore, pricing
long-dated options requires modeling the uncertainty arising for interest rate variations.
Examples of commodity or stock option pricing models accounting for uncertainties
in stochastic interest rates can be found in [Merton, 73], [Jarrow, 87]. Of course, as
described above, fixed income securities and related derivative instruments also require
modeling of the stochastic nature of interest rates. More generally, any parameter in the
stochastic model of the underlying asset that cannot be assumed predictable constitutes
a new source of uncertainty that cannot be neglected for long-dated instruments.

� Quality delivery options in futures contracts

The seller of a futures contract must deliver at expiration date some predefined underlying
asset. Sometimes, the contract specifies a series of acceptable underlying assets, in
which case the seller will deliver the cheapest one. In essence, the futures contract is
a multidimensional option on the minimum value of all the possible deliverable assets.
Consideration for the quality option is especially important in the case of interest rate
futures, where a number of bonds with different durations and characteristics can often
be delivered [Cheng, 87], [Boyle, 89].
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Numerical Valuation of High Dimensional Multivariate European Securities 3

� Pricing of insurance contracts

The Arbitrage Pricing Theory can be applied to the pricing of insurance policies. In
particular, as described above, some life insurance policies can be viewed as pure interest
rate contingent claims (see e.g. [Stanton, 89]). More generally, option pricing theory
can be applied to the valuation of property/liability insurance contracts, where the strike
price of the option corresponds to the deductible of the insurance policy. There is a
growing academicliterature on these subjects, that can be traced back to the work of
[Merton, 77] and [Smith, 79]. Other applications are presented in [Kraus and Ross, 82],
[Doherty and Garven, 86], [Cummins, 88] [Shimko, 92].

� Assets and Liabilities Management

Large corporations bear many different kinds of risks in the course of their activities.
Some of these risks can be hedged on financial markets. In particular, the currency
exchange risks and the interest rate risks can be hedged in many cases. For financial
institutions such as major banks and life insurance companies, this financial risk is
the only major source of uncertainty of the business. In order to minimize this risk,
the corporation must immunize itself as much as possible against variations of the
economic value of the firm as a function of the sources of uncertainty. This economic
value is simply the difference between the present value of assets and the present
value of liabilities. Given a model of the commercial and financial policy of the firm,
these present values can be computed as contingent claims on the economic variables
representing the risk (e.g. interest rates and currency exchange rates).

� Capital budgeting models in corporate investment decision making

When assessing the opportunity to invest in a new project, a financial manager must
determine theNet Present Value(NPV) of the project, i.e. the economic value of all the
possible future cash flows generated by the project. Several economic and commercial
variables are generally relevant for building a model of the probability distribution of
the future cash flows. In particular, when building the business plan for introducing a
new product to the market, one must estimate the possible evolutions of the parameters
associated with the product, as functions of the predefined marketing policy. These
parameters can be the market size, the market share of the company, the fixed and
variable costs, the expected price. Also, global economic variables such as gross
national product, rate of inflation, or interest rates may be relevant. According to
[Brealey and Myers, 91], the net present value can be computed as the expected value of
all future cash flows, discounted at the opportunity cost of capital. Computing the NPV
can be viewed as pricing a multidimensional contingent claim on the relevant economic
and commercial parameters. See [Mason and Merton, 85] for a review of applications
of option pricing theory to corporate finance.

1.3 European versus American instruments

For pricing purposes, financial assets can be divided into two majors classes. The first class is
that of assets whose future cash-flows cannot be influenced by decisions from the holder taken
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4 Jérôme Barraquand

after the purchase date. Most assets traded on financial markets belong to this class. We will
call European instruments all financial assets belonging to this first class. In particular, stocks,
bonds, futures contracts, European options, swaps, caps, floors, mortgage-backed securities are
European instruments. The second class is that of assets whose cash flows can be influenced
a posteriori by the holder. American options belong to this class. As another example, the
crediting policy of a Life Insurance company selling SPDAs greatly influences the present
value of the liabilities of the company. This crediting policy can be adjusted by the company
after signature of the contracts with the policyholders. Therefore, the liability associated with
the sale of SPDA can be viewed as an American security. We will call American instruments
all financial assets belonging to this second class.

Following the general theory of arbitrage pricing, the theoretical price of a European contingent
claim is the discounted expected value of its future cash flows under the so-called “risk-
neutral” probability distribution of the underlying economic factors [Harrison and Kreps, 79]
[Harrison and Pliska, 81], [Duffie, 88], [Karatzas and Shreve, 88]. Mathematically, computing
the arbitrage price reduces to computing an integral (sum) over the space of the underlying
economic factors. When the dimension of the space of the underlying economic factors is
small, standard techniques for numerical integration can be used. In some cases, the integral
can even be computed analytically (e.g. Black-Scholes formula). However, the computational
complexity of evaluating the integral is clearly exponential in the dimension of the space.

In this paper, we present efficient numerical techniques based upon Monte Carlo simulation
that enable us to compute accurate approximations of realistic European pricing problems in a
time quadratic in the number of underlying economic factors. Combining classical techniques
of importance sampling with a new approximation method calledquadratic resampling, we
can compute the theoretical prices of the most complex instruments within tens of seconds
on a PC or a workstation, and within a fraction of a second on currently available massively
parallel supercomputers. The method has been tested for pricing problems with up to 100
underlying factors.

The price of an American claim is the maximum over all possible cash flow monitoring strate-
gies of the associated present values of cash flows. For example, the price of an American
option is the maximum over all possible early exercise strategies of the corresponding present
values. Since the space of cash flow monitoring strategies is generally huge, direct maximiza-
tion of the present value is rarely practical (see [Bossaerts, 89] for a discussion). However,
when the underlying economy is modeled as a Markov process, one can use the Bellman
principle of dynamic programming to compute the optimal monitoring strategy. American
options are typically priced using a discrete approximation of the dynamic programming
principle. This is the case in particular of the CRR model [Cox, Ross, and Rubinstein, 79]
for American stock option pricing. This approach becomes however impractical when the
underlying economic space has many dimensions, since the dynamic programming algorithm
requires a memory space exponential in the number of dimensions. This fact is known as the
“curse of dimensionality” problem [Bellman, 57] for dynamic programming. Unfortunately,
the techniques developed in this paper for European claim pricing do not generalize simply to
the case of American claims.
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Numerical Valuation of High Dimensional Multivariate European Securities 5

This paper is organized as follows. In Section 2, we relate our contribution to previous work
in Monte Carlo integration and asset pricing. In Section 3, we recall the usual assumptions
on the stochastic processes governing the evolution of securities prices, and the main result
of the Arbitrage Pricing Theory. In Section 4, we briefly review Monte Carlo techniques
for the numerical valuation of multidimensional integrals, and describe in particular modern
importance sampling methods. In Section 5, we present the method of quadratic resampling.
In Section 6, we present numerical results demonstrating the efficiency of the quadratic
resampling method when combined with appropriate importance sampling schemes. We also
describe a massively parallel implementation of our Monte Carlo procedure. Finally, in
Section 7, we discuss the capabilities and limitations of the approach.

2 Relation to other work

Good reviews of the Monte Carlo method and different variance reduction techniques such
as antithetic variables, covariates, stratified sampling, importance sampling can be found
in many sources such as [Hammersley and Handscomb, 64], [Zaremba, 68], [Haber, 70],
[Kalos and Whitlock, 86], [Decker, 91] and references thereof. [Stroud, 71] is a comprehensive
source of results regarding multidimensional Gaussian quadrature rules. All our experiments on
Gaussian rules are based on methods proposed in [Stroud, 71]. The additive importance sampler
presented in this paper is described in [Dantzig and Glynn, 89] and [Dantzig and Infanger, 91]
in the context of portfolio optimization and other operations research applications.

The application of the Monte Carlo method to option pricing was first presented in [Boyle, 77],
in the context of claims contingent to a single underlying asset. It has then been used by
several authors for the valuation of path dependent contingent claims. In particular, the
method has been used for pricing mortgage-backed securities (see [Schwartz and Torous, 89],
[Hutchinson and Zenios, 91]). Interestingly, the model described in [Schwartz and Torous, 89]
could be solved faster by direct finite-difference approximation of the arbitrage partial
differential equation. Indeed, although the problem is initially path-dependent as a function
of interest rates, it can be made path-independent by including two additional state variables
in the model. These new variables aggregate all the necessary information on past values of
interest rates. The final model is four-dimensional, which is still tractable for direct numerical
integration. This technique of including new state variables to remove path dependence is
described in much detail in [Stanton, 89]. Many problems of path-dependence can be solved
that way. The Monte Carlo method, although much slower than direct numerical integration
for problems with few dimensions, is very flexible and simple to implement. This is why
it has been used in many problems of path-dependence that could be solved faster by direct
numerical integration. Another application of the Monte Carlo method to the valuation of
Single Premium Deferred Annuities contracts is described in [Stanton, 89].

The valuation of options depending of several underlying assets has been studied by several
authors. [Brennan and Schwartz, 79] addresses the problem of pricing options under two
sources of risk by direct finite-difference approximation of the generalized Black-Scholes
equation. In this example the two sources of risk are the short term and the long term
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6 Jérôme Barraquand

interest rates. The approach is clearly limited to a few assets, since the memory space
requirements and the computation time are both exponential in the number of underlying
assets. [Boyle, Evnine, and Gibbs 89] developed a multinomial lattice method for pricing
multidimensional options, in the spirit of the approach outlined in [Cox and Rubinstein, 85].
According to the authors, the computation becomes very burdensome for more than two assets.
In fact, the multinomial lattice approach can be viewed as a finite-difference approximation
of the generalized Black-Scholes equation using an explicit Euler scheme and an appropriate
change of variables [Brennan and Schwartz, 78].

[Stulz, 82] presents an analytical solution to the problem of pricing a European option on
the maximum or minimum of two underlying assets. The analytical solution is generalized
in [Johnson, 87] to the case of an arbitrary number of assets, taking as given the cumulative
multivariate normal distribution function. [Boyle, 89] and [Boyle and Tse, 90] developed an
approximate method for the same problem. Although the problem is solved analytically
in [Johnson, 87], the approximate method does not require preliminary computation of the
cumulative multivariate normal distribution function. To the best of our knowledge, the above
problem of option pricing on the maximum or minimum of several assets is the only case
reported in the literature where solutions to high-dimensional (say, more than 5) problems
have been developed.

Our contribution to the problem of multidimensional contingent claim pricing reported in this
paper is twofold:

–First, we show that a proper implementation of the Monte Carlo method makes the problem
of European contingent claims pricing tractable, even when the number of underlying assets is
very large (up to 100 in our experiments).

–Second, we present a set of three techniques for improving the accuracy of the Monte Carlo
estimation.

� We introduce an original error reduction technique, quadratic resampling, that consider-
ably improves the accuracy of Monte Carlo integration. Quadratic resampling can be
used for any multidimensional integration problem, and is computationally practical for
integrals with up to a few hundred dimensions. It can be combined with classical vari-
ance reduction techniques such as importance sampling to further improve the accuracy
of the computation. It is shown that, given a random vector having arbitrarily many
coordinates and an arbitrary joint distribution, the expected value of any polynomial of
degree two or less in the vector coordinates is computed exactly when using quadratic
resampling.

� We introduce a deterministic Quasi-Monte Carlo method which does not require the use
of pseudo-random numbers. For integrals in spaces with few dimensions, this Quasi-
Monte Carlo sampling method is considerably more accurate than pseudo-random
sampling. This method combines the advantages of direct numerical integration in
low-dimensional spaces with those of Monte Carlo integration in high-dimensional
spaces.
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Numerical Valuation of High Dimensional Multivariate European Securities 7

� We show that with currently available massively parallel technology, multidimensional
contingent claim prices can be computed two orders of magnitude faster than on a desktop
workstation. Therefore, since the accuracy of the Monte Carlo estimate is proportional
to the square root of the number of samples, the massively parallel implementation is
one order of magnitude more accurate than the workstation implementation for a given
computing time.

3 Arbitrage pricing of European securities

The arbitrage pricing theory is described in many textbooks. We refer the reader to [Duffie, 92]
for a comprehensive presentation.

3.1 Diffusion model of information process

We model the economy as a finite-dimensional vector of real-valued state variablesX(t) =
(x1(t); . . .; xn(t)), called factors, representing all the information available to investors at
time t. By definition,X(t) is known at timet. However,X(t) does not usually give enough
information to investors to allow perfect forecasting of the future evolutions of security
markets. Therefore,X(�); � > t is a stochastic process.

By construction,X(t) is a Markov process, i.e. future values of vectorX are independent of
past values of vectorX, conditionally to the knowledge ofX today. Indeed, if future values of
X were to depend not only onX(t) but also on past values, this would mean thatX(t) does not
represent all relevant information at timet, contradicting its definition.

SinceX(t) represents all information available to agents at timet, in a frictionless market,
prices of securities must be deterministic functions of time andX(t). It is said that securities
are contingent claims on the state variableX(t).

For the sake of simplicity, we will assume that the information processX(t) is a diffusion
process. However, our results on Monte Carlo valuation described in the next sections apply
to more general types of stochastic processes. IfX(t) is a diffusion process, it is a solution of
a stochastic differential equation of the type:

dX= A(X(t); t)dt + B(X(t); t)dW (1)

or equivalently:

8i 2 [1; n]; dxi = ai(x1; . . .; xn; t)dt +
nX

j=1
bij(x1; . . .; xn; t)dwj

The vectorA is called the drift of processX. A is the derivative of the expected value of
X. The matrix� = BBT is the derivative of the covariance ofX. W = (w1; . . .;wn) is a
n-dimensional standard Brownian motion.
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8 Jérôme Barraquand

Often, the variablesxi are prices of securities available on the market, and are therefore strictly
positive processes. The expected increments and covariance of increments are then expressed
in relative values:

8i 2 [1; n];
dxi

xi
= �xi(x1; . . .; xn; t)dt +

nX
j=1

vij (x1; . . .; xn; t)dwj

with
�xi = ai=xi; vij = bij=xi

The matrixV = (vij )(i;j)2[1;n]2 is called volatility matrix, and the covariance of relative returns

is the matrix� = (�ij )(i;j)2[1;n]2:

� = VVT

We have the following relationship:

ij = �ij xixj

3.2 European securities

A security is calledEuropean securityiff future cash flows cannot be influenced by decisions
from the holder taken after the purchase date (besides of course selling back the security).
Then the cash flows are only functions of time and information.

The cash flow generated by a European securityC during the time intervaldt, assumingC is
held indefinitely, will be denoted byfC(X(t); t)dt.

If the priceC(t) of a European securityC is positive, we can define the instantaneous relative
cash flow rate ordividend yieldas

dC(X(t); t) = fC(X(t); t)=C(t)

The aggregate cash flowFC(t0; t) from the purchase datet0 to any future datet follows the
equation:

FC(t0; t0) = 0; dFC = fCdt = dCCdt

The totalgain process GC, sum of the security’s liquidative value and the aggregate cash flow
is:

GC(t0; t) = C(t) + FC(t0; t)

Let �C denote the expected capital rate of return ofC:

�Cdt = E(
dC
C
)

The expected total rate of return ofC, i.e. the expected rate of return of the total gain process
is:

�GC
= �C + dC
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Numerical Valuation of High Dimensional Multivariate European Securities 9

The dividend yield of the money market accountL, called short term interest rate, is denoted
by r(X). If the proceeds of the money market account are continuously reinvested, the total
gain processL(t0; t) follows the equation:

L(t0; t0) = 1; dL= r(X)L(t0; t)dt

or equivalently:

L(t0; t) = exp
�Z t

t0
r(X(�))d�

�

3.3 Arbitrage Pricing

For any risk factorxi , let e(C=xi) denote theelasticityof priceC to xi :

e(C=xi) =
xi

C
@C
@xi

The major result of the Arbitrage Pricing Theory is the following. There exist numbers
�1; . . .; �n, called market prices for risk, such that for any securityC, the following relationship
holds:

�GC
= r +

nX
i=1

e(C=xi)�i

Furthermore, if factorxi is traded, the market price of risk for factorxi is the expected total rate
of return onxi in excess of the riskless interest rate. In particular, if allxi are traded, we have:

�GC
� r =

nX
i=1

e(C=xi)(�Gxi
� r) =

nX
i=1

e(C=xi)(�xi + dxi � r)

Using the properties of diffusion processes, the above results lead to the following partial
differential equation, called Black-Scholes equation:

� @C
@t

= (dC � r)C +
nX

i=1

@C
@xi

(�xi � �i)xi +
1
2
X
i;j

@2C
@xi@xj


ij (2)

If factor xi is the price of a traded security, the term�xi � �i is simplyr � dxi . In particular, if
all factors are traded, Black-Scholes equation simplifies to:

� @C
@t

= (dC � r)C +
nX

i=1

@C
@xi

(r � dxi)xi +
1
2
X
i;j

@2C
@xi@xj


ij (3)

We see that the above equation does not depend on the market prices for risk. Therefore, we
can replace the information processX by the so-calledrisk-neutralinformation process̃X for
which all market prices for risk are zero.
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10 Jérôme Barraquand

Using a theorem known under the name of Feynman-Kac Formula, we can represent explicitly
the solution of the above equation:

C(X(t); t) = Ẽt

 Z
1

t

fC(X(�); �)
L(t; �)

d�

!

whereẼt represents the expectation under the fictitious risk-neutral information processX̃.

Under suitable technical conditions, and using the linearity of the expectation operator:

C(X(t); t) =
Z
1

t
Ẽt

 
fC(X(�); �)

L(t; �)

!
d�

In particular, if a security only yields cash flowsfC(X(t1); t1); . . .; fC(X(tk); tk) at discrete
datest1 < . . .< tk, we have for any timet < t1:

C(X(t); t) =
kX

i=1
Ẽt

 
fC(X(ti); ti)

L(t; ti)

!

Therefore, the problem of computing the price of a security withk discrete cash-flows
fC(X(t1); t1); . . .; fC(X(tk); tk) reduces to that of computing the prices of each of thek
securitiesCt1; . . .; Ctk with respective single cash flowsfC(X(t1); t1); . . .; fC(X(tk); tk).

In practice, securities only yield cash flows at discrete times. In the following, we will consider
without loss of generality a securityC with a single cash flowfC(X(T)) at a givenexpiration
date T. Then,

C(X(t); t) = Ẽt

 
fC(X(T))
L(t;T)

!

Let p(X) be the risk-neutral probability density ofX(T) knowingX(t). We have:

C(X(t); t) =
Z

Rn

 
fC(X)
L(t;T)

!
p(X)dX (4)

The practical problem of pricing a European security undern sources of uncertainty reduces
to that of computing the above n-dimensional integral.

4 Monte Carlo valuation

4.1 Numerical integration on the real line

We consider the problem of evaluating the simple integral:

I(f ) =
Z b

a
f (x)dx
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Numerical Valuation of High Dimensional Multivariate European Securities 11

on the compact interval [a; b] for any functionf . When the above integral cannot be computed
analytically, the natural solution consists of approximating the integral by a weighted sum of
values off over a finite number of samplesx1; . . .; xm. The simplest quadrature rule is the
trapezoidal rule:

I(f ) � b� a
2m

f(a) +
b� a

m

m�1X
i=1

f (xi) +
b� a
2m

f(b)

with

8i 2 [1;m� 1]; xi = a +
i
m
(b� a)

In the above formula,m is an integer chosen large enough for accurate approximation of the
integral.

More complex formulas such as Simpson rule or Romberg integration have a higher order of
accuracy for smooth integrands (see [Stoer and Burlisch, 80] for a review).

A technique of particular interest is that ofGaussian quadrature. If the function f is the
product of a polynomialg of degree2m�1 and some knownkernel W, then we can find points
x1; . . .; xm and some weightsw1; . . .;wm independent ofg such that the integral:

IW(g) =
Z b

a
f (x)dx=

Z b

a
g(x)W(x)dx

is exactlyequal to the sum
mX

i=1
g(xi)wi

4.2 Multidimensional integration

The basic idea underlying numerical quadrature generalizes simply to n-dimensional integration
problems. We consider an n-dimensional hypercubeH = [a1; b1] � . . .� [an; bn] and the
quadrature problem:

I(f ) =
Z

H
f (x1; . . .; xn)dx1 . . .dxn (5)

For each coordinatexi , we choosemi samplesx1
i ; . . .; xmi

i . This generates a lattice of
n-dimensional samples containing them1 � . . .�mn points

8(j1; . . .; jn) 2 [0;m1] � . . . [0;mn]; Xj1...jn = (xj1
1 ; . . .; xjn

n )

We can find appropriate weightswj1;...;jn such that the sum:X
(j1;...;jn)2[0;m1]�...[0;mn]

f (xj1
1 ; . . .; xjn

n )w
j1;...;jn

approximates the integralI. For example, if we have for theith dimension a one-dimensional
integration formula of the form:

miX
j=1

f (xj
i)w

j
i
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12 Jérôme Barraquand

we can build the Cartesian product rule with weights

wj1;...;jn =
nY

i=1
wji

i

In particular, ifm1 = . . .= mn = m, the number of samples ismn. Therefore, evaluating the
sum is a problem requiring a computation time exponential in the number of dimensionsn.
Hence, direct numerical integration is impractical for high-dimensional problems.

Practical computation of a high-dimensional integral requires to choose fewer samples
X1; . . .;XM and weightsw1; . . .;wM, such that the total number of samplesM is polynomial in
the dimensionn. If the samples and weights are chosen carefully, the sum

MX
i=1

f (Xi)wi

approximates the integralI.

Choosing appropriate samples and weights is in general a difficult (i.e. intractable) problem.
However, in many practical situations, the functionsf to be integrated have specific properties
that make the problem tractable. In particular, security pricing problems of the type (4) lend
themselves surprisingly well to numerical integration.

The main idea described above underlying Gaussian quadrature can be extended to multi-
dimensional spaces. While classical Cartesian product rules require a number of samples
exponential in the dimension, there exist non-Cartesian rules requiring only a polynomial
number of samples. Let us consider a kernelW(x1; . . .; xn) defined overRn. In general, it can
be shown (see [Stroud, 71]) that there exist a Gaussian rule exact for all functionsf that can
be represented as the product ofW with a polynomial of degreem, and that requires at most

M =
(m+ n)!

m!n!

samples, number which is indeed polynomial inn for a givenm. For example, there exist
a formula exact for polynomials of degree two inRn requiring onlyM = (n + 1)(n + 2)=2
samples. In fact, for second degree polynomials, there even exist a formula with onlyn + 1
samples in dimensionn. In practice however, those rules have some negative coefficientswi ,
and are thus very unstable numerically. Most quadrature rules with only positive coefficients
require at least2n samples, and thus cannot be used for very high dimensional spaces.
[Stroud, 71] presents a comprehensive review of results on generalized Gaussian quadrature
rules.

We experimented with the best rules advocated by [Stroud, 71] on typical asset pricing problems
in dimensions ranging from1 to 10. In particular, we used the Cartesian product Gauss rule,
exact for any polynomial of degree3 multiplied by a Gaussian kernelW(X) = exp(�1

2jjXjj2).
This rule requires3n samples. In dimension10, this represents almost60; 000 samples.
Although the rule is exact for any polynomial of degree 3, our experiments have shown (see
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Numerical Valuation of High Dimensional Multivariate European Securities 13

Section 6) that it performs very poorly of typical asset pricing problems. We also used the
spherical Lobatto rule, exact for any polynomial of degree 5, and requiring2n+1� 1 = 2047
samples in dimension10. The results, presented in Section 6, show that these Gaussian
quadrature rules are inadequate for asset pricing problems in more than a few dimensions.

A alternative way of choosing the samples is to generate them randomly, using a pseudo-
random number generator. The resulting integration technique, known under the name of
Monte Carlointegration, is quite widespread and simple to implement. We present in the next
subsection the general principle underlying Monte Carlo integration.

4.3 Monte Carlo method and importance sampling

We consider the hypercubeH = [0; 1]n without loss of generality, and a uniformly distributed
random vectorX overH. By definition, the expected value of the variablef (X) is the integral
I(f ) defined by equation (5):

Eu(f (X)) = I(f ) =
Z

H
f (x1; . . .; xn)dx1 . . .dxn

whereEu denotes the expectation under the uniform distribution. The principle of Monte Carlo
integration is to generateM independent random samplesX1; . . .;XM of the vectorX and to
compute the empirical mean:

1
M

MX
i=1

f (Xi)

By the law of large numbers, this sample mean is approximately equal to the integralI(f ) for
M large enough.

This above crude Monte Carlo method converges very slowly even in dimension 1, and usually
does not converge in a reasonable amount of time in high-dimensional spaces.

One technique for accelerating convergence consists of performing an appropriate change of
variables in the integral. The technique is known in the literature asimportance sampling.
Let us assume that we know apositivefunction f̃ overH, such that̃f approximatesf in some
sense, and that the integral:

I(f̃ ) =
Z

H
f̃ (x1; . . .; xn)dx1 . . .dxn

is easy to compute. Then, we can consider the probability distribution whose density is

q =
f̃

I(f̃ )

Instead of generating uniformly distributed samples, we generate the samples
X1; . . .;XM with the importance sampling densityq. To do so, we assume that we can find a
change of variable inRn Y= (y1; . . .; yn) such that:

j det(dY=dX)j= q
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14 Jérôme Barraquand

Therefore,

I(f ) =
Z

H
fdX=

Z
H

f
q

qdX=
Z

Y(H)

f
q

dY= Eq(
f
q
)

whereEq denotes the expectation for the distribution of densityq. Equivalently:

I(f ) = I(f̃ )Eq(
f

f̃
)

In particular, whenf is positive, if we choosẽf = f , f=f̃ is always equal to1, hence
Eq(f=f̃) = 1 and there is no need to generate any samples. However, the normalizing factor
I(f̃ ) = I(f ) is precisely what we aimed at estimating in the first place. In practice,f̃ must be
chosen in such a way that it is approximately proportional tof , while still significantly easier
to integrate thanf .

There is no easy systematic way of choosing the appropriate importance sampling density
q. However, the integration problem is often naturally expressed in such a way thatf is
proportional to a special probability densityp:

f = gp

For problem (5),p is the function constant over the hypercubeH, density of the uniform
distribution. In general, when the problem at hand is to compute the expected value of a
random variableg(X) whereX has densityp, we havef = gp. p is then called thenatural
importance samplingdensity, and the method of importance sampling simply consists in
simulating Xwith its natural probability distributionp.

For asset pricing problems of the form (4), the risk-neutral probability densityp(X) of the
information processX is often a good candidate for importance sampling. We generate samples
X1; . . .;XM with the risk neutral probability distribution, and approximate the asset price by
the average discounted cash flow:

C(X(t); t) � 1
M

MX
i=1

fC(Xi)
L(t;T)

This technique is called risk-neutral importance sampling.

Recently, [Dantzig and Glynn, 89] and [Dantzig and Infanger, 91] have proposed the method
of additive importance sampling, an interesting paradigm for choosing importance sampling
functions. They consider a natural probability density functionp(X) in Rn, which makes then
coordinates independent two by two:

p(X) =
nY

i=1
pi(xi)

The corresponding distribution could be for example the uniform distribution over an hypercube
H (pi = 1=(bi�ai)) or the multivariatestandard normal distribution (pi = exp(�x2

i =2)=
p

2�).
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Numerical Valuation of High Dimensional Multivariate European Securities 15

We consider the problem of computing the integral:

Ip(f ) =
Z

Rn
f (X)p(X)dX

The method of additive importance sampling consists of identifyingn positive functions
f1(x1); . . .; fn(xn) such that their sum

f̃ (x1; . . .; xn) =
nX

i=1
fi(xi)

approximate the functionf . The integral of̃f is easier to compute than that off , since it is a
sum of monodimensional integrals:

Ip(f̃) =
nX

i=1

Z +1

�1

fi(x)pi(x)dx

Then

Ip(f ) =
Z

Rn

f

f̃
f̃ pdX=

nX
i=1

Z
Rn

f (X)
f̃ (X)

fi(xi)p(X)dX

The problem reduces to that of computing each of then integrals:

8i 2 [1; n]; I i =
Z

Rn

f (X)
f̃ (X)

fi(xi)p(X)dX

Due to the particular structure of the above integral, it is easy to generate samples with a
density proportional tofi(xi)p(x). Then, iff̃ is actually a good approximation off , the additive
importance sampler will converge substantially faster than the simple natural importance
sampler. The importance sampling density is

q = pf̃=Ip(f̃ )

It is the product of an additive function and of a multiplicative function of the variables
x1; . . .; xn.

4.4 Quasi-random sampling

Monte Carlo methods combined with appropriate importance sampling schemes are exper-
imentally efficient. However, generating the samples randomly is not necessarily the best
way of obtaining an accurate quadrature rule. Indeed, the efficiency of Monte Carlo methods
does not depend on the random nature of the samples, but on their equidistribution properties.
Deterministic techniques for generating samples often perform better than random techniques.
For historical reasons, deterministic techniques for choosing the samples are calledQuasi
Monte Carlotechniques. There is a fairly large literature on Quasi-Monte Carlo methods, that
we will not present here. We refer the reader to [Zaremba, 68] and [Haber, 70] for a review.
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16 Jérôme Barraquand

We developed a very simple method for generating deterministically equidistributed samples,
that happens to perform very well in practice. For low dimensional problems (say, problems
in dimensionn < 5), this approach is considerably more efficient than classical methods based
upon random number generation. On higher dimensional problems, the method yields results
similar to that of classical Monte Carlo methods. Hence, we can get the best of both worlds:
reasonable efficiency for high-dimensional problems, and high efficiency for low dimensional
problems.

We consider again problem (5). We assume that an appropriate importance sampling densityq
has been chosen. After the corresponding change of variableY(X) such thatjdet(dY=dX)j= q,
we are faced with the following problem:

I(g) =
Z

[0;1]n
gdY

with g = f=q. Instead of generating randomly uniformly distributed samples, we choose
to sample then-dimensional hypercube deterministically. We first choose an appropriate
quantization steph for each coordinate, sayh = 1=2k for a positive integerk. Since we make
our calculations on a 32 bits computer, a simple choice isk = 32. A quantized pointY in the
hypercube is then represented by a sequence ofn k-bits integers(y1; . . .; yn). We consider the
kn-bits integer:

L(y1; . . .; yn) =
nX

i=1
yi2k(i�1)

For each numberyi , we can write the representation ofyi in base2:

yi =
kX

j=1
yj

i2
j�1

whereyj
i 2 f0; 1g. Then:

L(y1; . . .; yn) =
nX

i=1

kX
j=1

yj
i2

k(i�1)+j�1

The mappingL is a one-to one mapping from the quantized hypercube [0; 2k[n onto the integer
interval [0; 2nk[. Intuitively, this mapping corresponds to scanning the quantized hypercube in
lexicographicorder.

Alternatively, we can consider the mapping inPeanoorder, defined as:

P(y1; . . .; yn) =
kX

j=1

nX
i=1

yj
i2

n(j�1)+i�1

If we consider the variables

8j 2 [1; k]; zj =
nX

i=1
yj

i2
i�1
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spanning the hypercube [0; 2n[k, we get:

P(y1; . . .; yn) =
kX

j=1
zj2n(j�1)

Hence, the Peano mapping can be viewed geometrically as a one-to-one mapping between the
hypercube [0; 2k[n and the hypercube [0; 2n[k. In our experiments, the lexicographic mapping
L and the Peano mappingP gave similar results. Forn = 1, both the lexicographic and the
Peano scan reduce to the identity function over the interval [0; 2k[.

Given any of those two mappings, sayL, we can now construct a sampling of the hypercube
by first sampling regularly the interval [0; 2nk[, and then taking the inverse of the mapping.

Given the desired number of samplesM, we perform the integer division:

2nk = MA + B

with B< M. Then, we sample regularly the interval [0; 2nk[ with theM numbers

8r 2 [1;M]; Yr = rA

The corresponding samples in the hypercube [0; 2k[n are theM points(yr
1; . . .; yr

n) verifying

L(yr
1; . . .; yr

n) = Yr = rA

If M is properly chosen, the samples are correctly distributed over the hypercube. In practice,
we chooseM of the formM = p�, wherep is a prime integer different from2, sayp = 3.
More advanced number theoretic methods of this type are described in [Stroud, 71].

In dimensionn = 1, the sampling is simply a regular sampling of the interval [0; 1].
Hence, the quadrature formula is almost identical to a regular trapezoidal formula, much
more accurate than a formula generated by a random sampling. More generally, this quasi
Monte Carlo method has the advantage of not introducing spurious randomness in low
dimensional integration problems. For high-dimensional problems, experiments have shown
that it performs similarly to classical Monte Carlo methods.

5 Quadratic resampling

We consider again the problem of computing the integral:

Ip(f ) =
Z

Rn
f (X)p(X)dX

wherep is a natural probability density function, andf any integrable function. In particular,
the general quadrature problem (5) is a special case of the above problem,p being the uniform
density over the hypercubeH. If we consider the random vectorX with densityp, this is
equivalent to the problem of computing the expected value

Ip(f ) = E(f (X))
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18 Jérôme Barraquand

We assume that then first order moments have been precomputed (either analytically or
through Monte Carlo simulation, using one of the importance sampling techniques described
above).

8i 2 [1; n]; Ip(xi) = E(xi) =
Z

Rn
xip(X)dX

The vector whose coordinates areE(xi) is denotedE(X), and called expected value ofX. We
also assume that then2 second order moments have been precomputed.

8(i; j) 2 [1; n]2; Ip(xixj) = E(xixj) =
Z

Rn
xixjp(X)dX

The matrix of second order moments is denotedE(XXT). By definition, the covariance matrix
of X is:

KX = E((X� E(X))(X� E(X))T) = E(XXT)� E(X)E(X)T

KX is a non-negative symmetric matrix. Without loss of generality, we will assume thatK is
positive. Indeed, ifKX is degenerate, we can always diagonalize it in an orthonormal basis,
perform the corresponding change of variables in the integralIp, and discard all degenerate
dimensions. Then, the above quadrature problem is transformed in a lower dimensional
non-degenerate quadrature problem.

SinceKX is non-negative symmetric, we can find a square root, i.e. a matrix denoted
p

KX

such that:
KX =

p
KX

p
KX

T

This can be done either throughLU decomposition, or through diagonalization ofKX in a
orthonormal basis. SinceKX is positive,

p
KX is regular (i.e. has an inverse).

We then consider a sequences of samplesX1; . . .;XM, generated either deterministically or
randomly. For example, they can be generated randomly so as to follow the distribution
of densityp. In general, we can choose any appropriate importance sampling densityq for
generating the samples. Then, we can define the empirical mean approximating the integral
Ip(f ) as:

f (X) =
MX

i=1
f (Xi)wi

with

8i 2 [1; n]; wi =
1PM

j=1 p(Xj)=q(Xj)
p(Xi)
q(Xi)

The normalizing factor forwi ’s has been chosen so as to have:

MX
i=1

wi = 1

In particular, the empirical mean is:

X =
MX

i=1
Xiwi

March 1993 Digital PRL



Numerical Valuation of High Dimensional Multivariate European Securities 19

We can define similarly the empirical covariance:

KX = (X� X)(X� X)T = XXT � X X
T

More explicitly:

KX =
MX

i=1
(Xi � X)(Xi � X)Twi =

MX
i=1

XiXiTwi � X X
T

If the samples are generated randomly, the law of large numbers applies. Therefore, for a
sufficiently large numberM of samples, the empirical meanX and the empirical covariance
KX will be arbitrarily close to the real meanE(X) and the real covarianceKX. Therefore,
since the set of regular matrices is open, the empirical covarianceKX must be non-singular
for M sufficiently large. If the samples are not generated randomly, there exist deterministic
sampling techniques guaranteeing the same convergence property of the empirical mean and
covariance to the real mean and covariance, and the same result applies.

SinceKX is non-singular, its square root
p

KX is also non-singular.

We define the gain matrix

H =
p

KX

q
KX

�1

and the new random variable:
Y= H(X� X) + E(X)

We consider theM samplesYi = H(Xi � X) + E(X). For this particular sampling, we get:

Y=
MX

i=1
Yiwi = E(X)

Similarly:

KY = (Y� Y)(Y� Y)T = (H(X� X))(H(X� X))T = HKXHT

Using the expressions above forH andKX as products of square root matrices we get:

KY = KX

Hence, the empirical first and second order moments using the samplesYi are exactly equal
to the real first and second order moments ofX. In particular, the empirical mean of any
polynomialf of degree two or less in the variablesx1; . . .; xn verifies:

f (Y) =
MX

i=1
f (Yi)wi = E(f (X))

We can state:
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Any numerical quadrature formula generated through quadratic resampling is
exact for any polynomial of degree two or less

In the above sense, the method of quadratic resampling can be viewed as a particular Gaussian
integration rule of degree 2, following the terminology of [Stroud, 71].

The method of quadratic resampling can be summarized as follows:

1) Precompute the expected valueE(X) and covariance matrixKX of the random vectorX
with densityp, if they are not available in analytical form.

2) Choose an importance sampling densityq(x) well-suited to the problem at hand, the
simplest choice beingq = p.

3) Sample the random vectorX using any available technique, i.e. Monte Carlo sampling
or deterministic sampling, to obtain a sequenceX1; . . .;XM. Define the empirical
quadrature formula:

f (X) =
MX

i=1
f (Xi)wi

Compute the empirical meanX and empirical covariance matrixKX. ChooseM large
enough so thatKX is non-singular.

4) Compute the matrixH =
p

KX

p
KX

�1

5) Compute the modified samplesYi = H(Xi � X) + E(X), to obtain the modified empirical
quadrature formula:

f (Y) =
MX

i=1
f (Yi)wi

6 Experimental results

6.1 A test case

We implemented the different numerical quadrature schemes presented above on a test case
described below.

We consider two real numbers� and � with �1=(n� 1) � � � 1, and the non-negative
symmetric matrixK = (kij )(i;j)2[1;n]2, such that

8i 2 [1; n]; kii = �2

and
8(i; j) 2 [1; n]2; i 6= j; kij = ��2
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We consider a random vectorX = (x1; . . .; xn)T 2 Rn, following a multivariate normal
distribution with zero mean and covariance matrixK.

Let us assume thatK is of rankk � n, and let us compute a square rootV of K, i.e. an� k
matrix such that:

K = VVT

We consider the random vectorZ:

Z = (VTV)�1VTX

By construction,X = VZ, andZ follows a k-dimensional standard normal distribution.

We can always takek = n by completing the matrixV with columns of zeros, and consider
the quadrature problem:

I(f ) = E(f (X)) =
Z

Rn
f (X)pX(X)dX=

Z
Rn

f (VZ)pZ(Z)dZ

wherepX andpZ are the densities ofX andZ. Hence:

I(f ) =
Z

Rn
f (VZ)

exp(�jjZjj2=2)p
2�n dZ

We choose the particular expression forf :

f (x1; . . .; xn) =
n

max
i=1

exp(xi)

With this choice, we obtain a three parameters quadrature problem:

I(n; �; �) =
Z

Rn

n
max
i=1

exp(
nX

j=1
vij zj)

exp(�Pn
k=1 z2

k=2)p
2�n dz1 . . .dzn

The above problem admits the following financial interpretation. We consider a stock market
includingn dividend-free stocks with pricesS1; . . .;Sn following a jointly lognormal diffusion
process with any arbitrary expected yearly returns�i, and a covariance matrix of yearly returns
equal toK. We have:

8i 2 [1; n];
dSi

Si
= �idt +

nX
j=1

vij dwj

whereW = (w1; . . .;wn)T is an n-dimensional standard Brownian motion. It can be shown
that the solution of the above equation is

8i 2 [1; n]; Si(t) = Si(0) exp((�i � kii=2)t +
nX

j=1
vij wj(t))

Usingkii = �2 and settingxi(t) =
Pn

j=1 vij wj(t), we get:

Si(t) = Si(0) exp((�i � �2=2)t) exp(xi(t))
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We assume that the annualized interest rater is constant and known at time0. Therefore,
the risk-neutral information process is obtained by replacing all�i ’s in the above equations
by r. If we consider the priceC at time zero of a contingent security with a single cash flow
g(S1; . . .;Sn) at dateT, the Feynman-Kac formula yields:

C=
Z

Rn
exp(�rT)g(S1; . . .;Sn)

exp(�Pn
k=1 z2

k=2)p
2�n dz1 . . .dzn (6)

with

Si = Si(0) exp((r � �2=2)T) exp((
nX

j=1
vij zj)

p
T)

If the contingent claim is an option with zero strike entitling its holder to choose any one of
then securitiesS1; . . .;Sn at expiration date, we have:

g(S1; . . .;Sn) =
n

max
i=1

Si

Indeed, any clever investor will choose the security with the highest market value at timeT.

Finally, if we assume that the initial prices of the stocks at time zero are all equal to1, and that
the cash flow is exactly one year hence(T = 1:0), we get:

Si = exp(r � �2=2) exp(xi)

Hence:
C= exp(��2=2)I(n; �; �)

The above quadrature problemI(n; �; �) can be interpreted as an option pricing problem.
Although this problem can be solved analytically using then-dimensional multivariate normal
distribution function (see [Johnson, 87]), it is an appropriate testbed for numerical integration
methods.

We tested four different Monte Carlo procedures, to be described below, on the above test
case for different values of the parameters. All the four methods use importance sampling.
Indeed, for large values ofn, a crude Monte Carlo method using uniformly distributed
samplesz1; . . .; zn would take an astronomical number of samples to converge. The simplest
importance sampler is the Natural Importance Sampler (NIS), which consists of generating
z1; . . .; zn following a n-dimensional standard normal distribution. Since the normal distribution
has the property of central symmetry at the origin, we also use in the four methods the technique
of Antithetic Variables (AV). Instead of generating randomlyM samples, we generateM=2
samplesZ1; . . .;ZM=2 and take for the remaining samplesZM=2+1; . . .;ZM the opposite values
�Z1; . . .;�ZM=2 (M is assumed even for simplicity). The technique of antithetic variables
applied to normal samples guarantees in particular that the empirical first order moments (i.e.
the expected value ofZ) are exactly equal to their theoretical values (0 here). If the functionf
has some amount of correlation with the coordinateszi, the technique will reduce the variance
of the samples, and thus improve the accuracy of the Monte Carlo estimate. This is the case
in particular for the functionf chosen in our test case. In general, it is the case for most asset
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pricing problems, since the cash-flows generated by securities are often monotonous functions
of the underlying economic factors.

We now describe the four methods:

Method 1: AV-NIS Method 1 is simply the one just described. It uses the technique of
antithetic variables, and uses the natural importance sampler.

Method 2: AV-NIS-AIS Method 2 uses in addition to Method 1 the Additive Importance
Sampler (AIS) described in the previous sections. The functionsfi chosen are:

8i 2 [1; n]; fi(zi) = exp(vii zi)

Method 3: AV-NIS-QR Method 3 uses in addition to Method 1 the technique of Quadratic
Resampling (QR). Since the moments of the multivariate normal distribution are known
analytically, we do not need to precomputeE(Z) andKZ:

E(Z) = 0; KZ = In

whereIn is the identity matrix inRn.

Method 4: AV-NIS-AIS-QR Method 4 uses in addition to Method 2 the technique of
Quadratic Resampling.

These four methods were tested on the quadrature problemI(n; �; �) for different values of
the parameters. All tests used a sample sizeM = 4000. Table 1 shows the standard errors for
the four methods in dimensionn = 10using� = 1 and four different values of the correlation
parameter� = �1=9; 0; 1=2; 1. The value� = 1 corresponds to a volatility of100 percent
per year for each of the 10 pricesS1; . . .;S10.

Table 2 shows the standards errors, again in dimensionn = 10, using� = 0:1. This represents
a volatility of 10percent per year for each of the underlying assets prices.

The results presented in Tables 1 and 2 illustrate the relative efficiency of the different
methods on 10-dimensional problems. For problems with high volatility (� = 100%),
quadratic resampling (Method 3, AV-NIS-QR) reduces the error by a factor ranging from 2
(low correlation) to 3 (high correlation) (as compared to Method 1, AV-NIS). The method of
additive importance sampling also reduces the error by a factor of 2 (low correlation) to 1.2
(high correlation) (Method 2 / Method 1). Interestingly, the error reduction power of quadratic
resampling and additive importance sampling can becombined(in Method 4), yielding an
error reduction factor of approximately 4 over Method 1. This corresponds in terms of
computing time to a speedup of 16 for a given accuracy. The quadratic resampling method
works best on problems exhibiting a high correlation between variables� � 0:5, while the
additive importance sampling method works best on problems with low correlation between
variables.
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� I(10; 1:0; �) Method 1 Method 2 Method 3 Method 4

-1/9 5.91 0.0734 0.0421 0.0423 0.0260
0.0 5.62 0.0697 0.0311 0.0424 0.0204
0.5 4.18 0.0534 0.0219 0.0287 0.0125
1.0 1.65 0.0265 0.0213 0.0083 0.0054

Table 1: Standard errors in dimensionn = 10 for � = 100%

� I(10; 0:1; �) Method 1 Method 2 Method 3 Method 4

-1/9 1.178 0.00109 0.00104 0.00050 0.00051
0.0 1.168 0.00102 0.00097 0.00047 0.00047
0.5 1.119 0.00070 0.00065 0.00032 0.00032
1.0 1.005013 0.00016 0.00013 0.00000048 0.00000032

Table 2: Standard errors in dimensionn= 10 for � = 10%

For lower volatilities (� = 10%), the additive importance sampler performs poorly. The
method of quadratic resampling yields an error reduction factor ranging from 2 for problems
with low correlation to several hundreds for problems with high correlation. Indeed, the
cash-flow function is closer to its second order Taylor expansion for lower volatilities. Since
quadratic resampling yields exact results for functions that are equal to their second order
Taylor expansion, it is likely to give more accurate results for problems with low volatilities.

All calculations were performed on a DECstation 5000 model 200 desktop workstation, using
a MIPS R3000 microprocessor at a clock rate of 25 Mhz. All calculations were performed
in double precision floating point arithmetics. The simulation program was written in the
C programming language, and compiled without any optimization. The resulting computing
times for each run of 4000 samples were just below 1 second.

Tables 3 and 4 present the same results in dimensionn = 5. The conclusions are similar.
For high volatilities, quadratic resampling reduces the error by a factor ranging from 2 (low
correlation) to 5 (high correlation). When combined with additive importance sampling,
the total error reduction factor ranges from 5 to 10, corresponding to a reduction factor in
computing time ranging from 25 to 100. For lower volatilities, the additive importance sampler
performs again poorly. The method of quadratic resampling yields an error reduction factor
ranging from 5 for problems with low correlation to several hundreds for problems with high
correlation. In Table 4, the error reduction of Method 4 over Method 1 ranges from 5 to 1000,
corresponding to a reduction factor in computing time ranging from 25 to 1 million. The
resulting computing times foreach run of 4000 samples were about 1/3 of a second.

Finally, Tables 5 and 6 present results in dimensionn = 100. For high volatilities (Table
5), quadratic resampling reduces the error by a factor ranging from 1.25 (low correlation) to
3.5 (high correlation). When combined with additive importance sampling, the total error
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� I(5; 1:0; �) Method 1 Method 2 Method 3 Method 4

-1/4 4.39 0.0719 0.0365 0.0230 0.0141
0.0 4.07 0.0594 0.0186 0.0255 0.0088
0.5 3.29 0.0448 0.0102 0.0205 0.0058
1.0 1.65 0.0284 0.0183 0.0067 0.0028

Table 3: Standard errors forn = 5 and� = 100%

� I(5; 0:1; �) Method 1 Method 2 Method 3 Method 4

-1/4 1.141 0.00133 0.00126 0.00027 0.00027
0.0 1.126 0.00117 0.00110 0.00024 0.00024
0.5 1.090 0.00079 0.00073 0.00017 0.00016
1.0 1.005013 0.00017 0.00011 0.00000040 0.00000017

Table 4: Standard errors forn= 5 and� = 10%

� I(100; 1:0; �) Method 1 Method 2 Method 3 Method 4

0.0 13.58 0.1235 0.0984 0.0994 0.0818
0.5 7.94 0.0850 0.0694 0.0486 0.0422
1.0 1.65 0.0301 0.0294 0.0087 0.0084

Table 5: Standard errors forn = 100and� = 100%

� I(100; 0:1; �) Method 1 Method 2 Method 3 Method 4

0.0 1.286 0.000901 0.000887 0.000698 0.000696
0.5 1.1975 0.000588 0.000579 0.000457 0.000456
1.0 1.005013 0.000169 0.000165 0.00000051 0.00000049

Table 6: Standard errors forn= 100and� = 10%
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26 Jérôme Barraquand

reduction factor ranges from 1.5 to 3.6, corresponding to a reduction factor in computing time
ranging from 2.3 to 13. For lower volatilities, the additive importance sampler performs again
poorly. The method of quadratic resampling yields an error reduction factor ranging from 1.3
for problems with low correlation to several hundreds for problems with high correlation. In
Table 6, the error reduction of Method 4 over Method 1 ranges from 1.3 to 350, corresponding
to a reduction factor in computing time ranging from 1.7 to 100,000.

The resulting computing times foreach run of 4000 samples were about 1 minute and
10 seconds. In general, the computation time is quadratic in the dimensionn, since the
computation of each sample requires to compute the transformationX = VZ, andV is an� n
matrix.

To illustrate typical computing time in practical cases, let us consider the computation of
I(10; 1:0; 0:0) using Method 4. The result, presented in Table 1, is5:62, and has a standard
error of approximately0:02. Using the central limit theorem, we see that the accuracy for
a confidence level of99:995% is approximately0:08 (4 times the standard error). In order
to make the last digit significant, an accuracy of0:01 (8 times higher) is required. Hence,
the computation time for0:01 accuracy would be8 � 8 = 64 times higher. The result
would be obtained in about 1 minute of computation on the same hardware platform, with
256000samples. With Method 1, the same result would be obtained in about 12 minutes of
computation, using more than 2.5 millions of samples. Not surprisingly, Table 2 shows that
problems with lower volatility require much less computing time. Even for low correlations,
three digit accuracy is achieved in a small fraction of a second, and four digit accuracy in a
couple of seconds (the error margin of Method 3 for�= 0:0 is about4�0:00047� 0:002for
a confidence level of99:995% using only 4000 samples, i.e. a computation time of 1 second).

In general, the computing time may vary from several minutes to a fraction of a second,
depending of the characteristics of the covariance matrix, and on the accuracy required. Since
the accuracy of Monte Carlo methods is proportional to the square root of the number of
samples, getting one additional significant digit requires a computing time 100 times longer
on a given hardware platform.

6.2 Comparison with classical Gaussian rules

We implemented several classical Gaussian integration rules proposed in [Stroud, 71] and
experimented with them on the above test case.

We present below some results for 2 different rules, designed for approximating integrals of
the form:

I(f ) =
Z

Rn
f (z1; . . .; zn)

exp(�Pn
k=1 z2

k=2)p
2�n dz1 . . .dzn

Gauss1 is a classical Cartesian product rule of the form described in Section 4.2. It is exact if
f is a polynomial of degree 3.

In dimension 1, the three sample points are�p3, 0, and
p

3. The corresponding weights
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� I(10; 1:0; �) Gauss1 Gauss2 Stdev Method 4

-1/9 5.91 5.53 5.46 0.034
0.0 5.62 4.901 5.35 0.028
0.5 4.18 4.11 3.64 0.018
1.0 1.65 1.64 1.64 0.0078

Table 7: Values computed from Gaussian quadrature rules (n= 10, � = 100%)

� I(10; 0:1; �) Gauss1 Gauss2 Stdev Method 4

-1/9 1.178 1.180 1.165 0.00065
0.0 1.168 1.159 1.142 0.00061
0.5 1.119 1.120 1.096 0.00041
1.0 1.005013 1.005013 1.005013 0.0000004

Table 8: Values computed from Gaussian quadrature rules (n = 10, � = 10%)

are1=6, 2=3, and1=6. In dimensionn, the total number of samples is therefore3n.

Gauss2 is a so-called spherical Lobatto rule (see [Stroud, 71]). It is exact for polynomials of
degree 5. The total number of samples in dimensionn is 2n+1� 1

In dimension10, the number of samples required for the Cartesian product rule Gauss1 is
59049. The number of samples required for the spherical Lobatto rule Gauss2 is2047. Results
are presented in Tables 7 and 8. In order to compare these Gaussian rules with the Monte
Carlo method, the last column of the tables shows the standard error of Method 4 above, for
the exact same number of samples as the Lobatto rule, i.e. 2047 in this case. The results
from Table 7 show that both Gaussian rules are very inaccurate for pricing problems with high
volatilities and low correlations. The error is in most cases over5%, and exceeds10% on
several examples, while the standard error of Method 4 remains under0:5% for 2047 samples.
Correct results are obtained only on problems with very high correlation. Results in Table
8 indicate that Gaussian rules perform better on problems with low volatilities, but are still
not nearly as good as Monte Carlo methods for a given number of samples. The error of the
Lobatto rule ranges from1% to over2%, while the error of Method 4 remains below0:05%
with the exact same number of samples. The Cartesian product Gauss rule Gauss1 is about as
accurate as Method 4 for low volatilities, but it requires 30 times more samples.

Tables 9 and 10 present results in dimensionn = 5. Gauss1 requires243 samples, while
Gauss2 requires63samples.

Results are presented in Tables 9 and 10. As before, the last column of the tables shows
the standard error of Method 4 above, for the exact same number of samples as the Lobatto
rule, i.e. 63 in this case. The error reported in Table 9 (high volatilities) ranges from5%
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� I(5; 1:0; �) Gauss1 Gauss2 Stdev Method 4

-1/4 4.39 4.30 4.35 0.116
0.0 4.07 3.78 3.87 0.077
0.5 3.29 3.30 2.93 0.048
1.0 1.65 1.64 1.64 0.020

Table 9: Values computed from Gaussian quadrature rules (n = 5, � = 100%)

� I(5; 0:1; �) Gauss1 Gauss2 Stdev Method 4

-1/4 1.141 1.115 1.111 0.0025
0.0 1.126 1.113 1.108 0.0022
0.5 1.090 1.086 1.073 0.0015
1.0 1.005013 1.005013 1.005013 0.0000001

Table 10: Values computed from Gaussian quadrature rules (n = 5, � = 10%)

to 10% on most examples, while the standard error of Method 4 remains under2% for 63
samples. Results in Table 10 indicate that Gaussian rules perform better on problems with
low volatilities, but are still not nearly as good as Monte Carlo methods for a given number of
samples. The error of the Lobatto rule ranges from1% to 2%, while the error of Method 4
remains below0:22% with the exact same number of samples.

Of course, these Gaussian rules cannot be implemented in dimensionn = 100, since they
would require an astronomical number (over1030) of samples.

In conclusion, we see that classical Gaussian quadrature rules do not stand the comparison
with the best Monte Carlo methods, even on relatively low-dimensional problems (e.g.n= 5).
Gaussian integration methods are only useful on problems with very few dimensions (say1 to
3).

6.3 Massively parallel implementation

We implemented the Monte Carlo procedure on a DECmpp 12000 massively parallel deskside
workstation with 4K (4096) processors. We present below comparative computing times with
a DECstation 5000 model 200 workstation.

We consider againn stocks with a covariance matrix of relative returns of the form described
in the previous subsection. The price of any claim contingent to then stocks with a single
cash-flow date is computed from formula (6).

We considered several examples for the cash-flow functiong. The first example was that of
an option on the best performance of then stocks, with a non-zero strike priceH. Then, the
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functiong is:

g(S1; . . .;Sn) = max
�

0; n
max
i=1

Si � H
�

(7)

The second example was that of an option on a market index (CAC 40) representing the
weighted average ofn= 40stocks:

g(S1; . . .;S40) = max

 
0;

40X
i=1

�iSi � H

!

Several other forms of cash-flow functions were also tested such as the quality delivery option
of futures contracts:

g(S1; . . .;Sn) =
n

min
i=1

Si

We implemented for the above pricing problem the Method 1, AV-NIS, on the DECmpp.
The program was written in the MASPAR MPL language, a parallel extension ofC. The
parallelization paradigm for Monte Carlo quadrature algorithms is particularly simple on such
SIMD (Single Instruction Multiple Data) computers. It consists of distributing on different
processors the computation of different samples, and finally adding the results obtained by all
processors. We give below experimental computing times for the first example of cash flow
function. The parallelization speedups obtained for all other examples were strictly similar.
In this first example using function(7), the initial prices of then = 10 stocks were all set to
Si(0) = 40:0 dollars, the strike price wasH = $40:0, the interest rate was set tor = 7%,
the time to expirationT = 200 days. The volatility� was set to30%, and the correlation�
to 50%. In order to reach a1=2 cent accuracy at a confidence level of99:995%, we used 16
millions of samples. The computed price wasC= $12:26.

The computation time on the 4K DECmpp was 62 seconds, using single precision floating
point arithmetics. In comparison, the computation time for the same problem on a DECstation
5000-200 in single precision and using all available compiler optimizations was 31 minutes.
This represents a speedup factor of 30. In double precision, the speedup was 23. We estimate
that the speedup on a full-size (16K) DECmpp 12000 would be exactly four times the speedup
obtained on the 4K DECmpp, since the Monte Carlo method can be fully parallelized. Then,
the speedup factor would be about 90 in double precision and 120 in single precision. These
figures are clearly not specific to this particular example, and apply in fact to any Monte
Carlo integration problem where the number of samples required is higher than the number of
available processors.

We can conclude that the massively parallel implementation yields a speedup factor of roughly
two orders of magnitude for most Monte Carlo integration problems.

Method 3, AV-NIS-QR, parallelizes exactly in the same fashion after precomputation of the
modified samples. For the particular example above, the error reduction factor using quadratic
resampling was2:3, yielding a speedup factor of more than5 over Method 1, AV-NIS.

We also compared Method 1 and Method 3 on the same example in dimensionn = 100, all
other parameters being unchanged. The call price is $20:23. The speedup factor obtained
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through quadratic resampling is only1:5 in that case. Using Method 3 with 4000 samples, the
standard error is0:053, and the computation time is about 1 minute on a DECstation 5000.
The same computation on a 4K DECmpp 12000 would be done in about 2 seconds.

Finally, we compared Method 1 and Method 3 on the same example in dimensionn= 5. The
call price isC= 9:70. The speedup factor obtained through quadratic resampling is 12. Using
Method 3 with 4000 samples, the standard error is0:024. The computation time is about 1/3
of a second on the DECstation, and could be done in 1/100 of a second on the DECmpp.

7 Conclusion

In this article, we described a systematic numerical technique for pricing arbitrarily complex
European securities. Besides its obvious applications to trading and hedging in organized
capital markets, European security pricing has many important applications in various areas
of risk management such as assets and liabilities management and corporate investment
decision making. Using this technique, we were able to compute the prices of the most
complex European instruments in a few tens of seconds on a workstation, and within a
fraction of a second on a massively parallel computer. We have shown that this technique
outperforms previous general purpose European security pricing methods, either in the range
of applicability, or in theaccuracy obtained for a given computation time.

Our approach essentially relies on the well known Monte Carlo method, combined with
appropriate importance sampling schemes and a new error reduction technique, that we call
quadratic resampling. We have shown that the multidimensional quadrature problem is
solved exactly for any polynomial of degree two or less when using quadratic resampling.
When tested on typical multidimensional asset pricing problems, quadratic resampling yields
significant error reduction. The error reduction factors ranged from 1.2 to 1000 in our
experiments. The typical error reduction for problems in up to 10 dimensions was about 3,
corresponding to a speedup factor of roughly one order of magnitude. The method is readily
applicable to any European asset pricing problem involving an arbitrary number of variables.
We have successfully implemented the method for problems with up to 100 dimensions.
Besides its applications to security pricing, the method could be applied to any problem where
the computation of high-dimensional integrals is required. Examples of such problems can
be found for example in failure rate analysis of mechanical and electronic systems, and in
the simulation of complex physical phenomena such as those occurring in nuclear physics,
mechanics, and fluid dynamics.

We feel that the method presented in this paper and the experimental results obtained with
it make it possible to realistically envision the use of multidimensional stochastic models for
practical real-world quantitative risk management problems. This capability of computing
the joint influences of several tens of risk factors such as interest rates of various terms in
different currencies, equity of various kinds, and any other relevant economic variables, may
dramatically increase the competitive advantage of quantitative methods over more traditional
analysis techniques. An area of particular interest is that of estimating precisely the economic
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value (net present value) of firms such as banks and insurance companies from a quantitative
analysis of their balance sheet. However, this numerical pricing method does not generalize
simply to American asset pricing problems, which cannot be reduced to multidimensional
quadrature problems. Extensions of this approach for American asset pricing are left for future
research.

Research Report No. 26 March 1993
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Claude Hervé, Thierry Pudet, and Jean-Manuel Van Thong. May 1989.

Research Report 2: BigNum: A Portable and Efficient Package for Arbitrary-Precision
Arithmetic. Bernard Serpette, Jean Vuillemin, and Jean-Claude Hervé. May 1989.
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