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Abstract

We consider the problem of pricing a contingent claim whose payoff depends on several
sources of uncertainty. Using classical assumptions from the Arbitrage Pricing Theory, the
theoretical price can be computed as the discounted expected value of future cash flows
under the modified risk-neutral information process. Although analytical solutions have
been developed in the literature for a few particular option pricing problems, computing the
arbitrage prices of securities under several sources of uncertainty is still an open problem in
many instances. In this paper, we present efficient numerical techniques based upon Monte
Carlo simulation for pricing European contingent claims depending on an arbitrary number
of risk sources. We introduce in particular the method of quadratic resampling (QR), a new
powerful error reduction technique for Monte Carlo simulation. Quadratic resampling can be
efficiently combined with classical variance reduction methods such as importance sampling
to further improve the accuracy of the estimate. Our numerical experiments show that the
method is practical for pricing claims depending on up to one hundred underlying assets.
We also describe an implementation of the method on a massively parallel supercomputer,
yielding two orders of magnitude of performance improvement over the same implementation
on a desktop workstation.

Résumé

Nous€tudions le proldme de IEvaluation d’un actif conditionnel dont la valeuegEnd de
plusieurs sources de risque. Avec les hypsats classiques de laetirie de I'arbitrage, le prix
théorique peukfre calcut” comme l'espfance matbmatique actuale® des flux financiers
futurs pour le processus modifiieutre visa-vis du risque. Bien que des solutions analytiques
existent pour certains pradihies particuliers évaluation d’options, Evaluation nurafique
du prix d'arbitrage des actifs multidimensionnels reste un jmlel buvera’'ce jour dans de
nombreux cas. Nous proposons des techniqueeriqu€s efficaces bag$ sur la rathode de
Monte Carlo pour calculer le prix d'actifs Euregns @pendants d’'un nombre arbitraire de
sources de risque. Nous introduisons en particuliegthode dugéchatillonnage quadratique
(RQ), nouvelle technique puissante dduction d’erreur pour la simulation de Monte Carlo. Le
réechatillonnage quadratique peatre combir’avec les rathodes classiques dedtiction de
variance telles qued¢hantillonnage par importance poadtiire encore I'erreur d’estimation.
Les ®Bsultats exgfimentaux montrent I'efficadtde cette approche poavdluer des actifs
conditionnels dpendants d’'une centaine d’actifs sous-jacents. Noeseptbns aussi une
implantation de la rathode sur une machine massivement palglpermettant de gagner deux
ordres de grandeur en vitesse de calcul par raponte implantation sur station de travail.
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Numerical Valuation of High Dimensional Multivariate European Securities 1

1 Introduction

1.1 Background

Since the seminal work of Black and Scholes [Black and Scholes, 73] and Merton [Merton, 73]
in the early 1970s, the arbitrage principle underlying option valuation theory has been extended
to a broad range of other financial instruments (see e.g. [Ross, 76], [Cox and Rubinstein, 85]).
Indeed, any security whose returns are contractually related to the returns on some other
security or group of securities can theoretically be valuated using the same arbitrage principle.
This is the case in particular of warrants, convertible bonds, but also common stocks,
ordinary bonds, and most other types of contractual instruments. In some cases, explicit
closed form analytical formulas for the computation of the arbitrage price can be derived
from this theory. In particular, the original paper of Black and Scholes provides a closed
form solution for a European option on a single common stock. Unfortunately, few other
cases can be solved analytically, and computing the arbitrage price often requires numerical
simulations. Following an idea initially presented in an early edition of [Sharpe, 85], Cox,
Ross, and Rubinstein [Cox, Ross, and Rubinstein, 79] [Cox and Rubinstein, 85] developed a
discrete model for the valuation of an American option on a single stock that can be easily
computed numerically. However, the effective implementation of the arbitrage principle is
not always such an easy task, and may sometimes become intractable. For example, when a
contingent claim depends on many sources of uncertainty, there is no known general tractable
algorithm for computing accurately the arbitrage price.

1.2 Multidimensional pricing models

There are several reasons motivating the development of efficient methods for multidimensional
contingent claim pricing. We briefly review some of them below, but the list is certainly not
exhaustive. The tremendous development of financial engineering during the past decade can
be expected to continue, and new types of securities requiring multidimensional modeling are
likely to appear at a sustained pace in the future.

¢ Complex Over The Counter warrants

Many instruments depending on several underlying securities are being proposed on
Over The Counter markets. One can buy options on the best performance of several
securities, or on the spread between different market indexes. In foreign exchange
markets, complex instruments are being proposed that enable investors to diversify their
portfolios internationally while protecting them from the relative variations of several
different currencies. In commodity markets, long-dated options on portfolios of futures
contracts with various maturities are being proposed to protect investors from long term
evolutions of the underlying commodity and of its convenience vyield.

¢ Path-dependent instruments
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2 Jérébme Barraquand

Specialized institutions are now proposing options that depend not only on the current
value of the underlying asset, but on the whole history of underlying asset prices
until expiration date. Well known examples are lookback options (e.g. options on the
minimum value of the underlying for a given period of time), and Asian options (e.g.
options on the average value of the underlying for a given period of time). These
path-dependent instruments can be viewed as multidimensional contingent claims on
the sequence of underlying asset prices until the expiration date. Other examples of
path-dependent instruments are Mortgage-Backed Securities (MBS), which depend on
the past history of interest rates, and certain life insurance contracts, such as Single
Premium Deferred Annuities (SPDA) and Guaranteed Interest Contracts (GIC).

¢ Interest rate related instruments

A new generation of term structure models [Heath, Jarrow, and Morton, 92] has recently
been developed. These models can account for non-parallel evolutions of the term
structure, i.e. discrepancies in the evolutions of short and long-term rates. According to
these models, the whole term structure of interest rate is a multidimensional underlying
asset for interest rate contingent claims. Examples of interest rate contingent claims
include all kinds of fixed-income securities such as bonds and convertible bonds, bond
options, swaps, caps, floors, collars, swaptions, but also mortgage-backed securities and
SPDAs [Fabozzi, 87].

¢ Models with stochastic parameters

Is is well known that the volatility of the underlying asset cannot be assumed constant
for long-term options. Recently, new option pricing models have been developed that
attempt to take into account the stochastic nature of volatility (see e.g. [Wiggins, 87],
[Dothan, 87], [Hull and White, 88]). In these models, the option price depends on two
sources of uncertainty: the underlying asset itself, and its volatility. Similarly, the
interest rates cannot be assumed constant for a long period of time. Therefore, pricing
long-dated options requires modeling the uncertainty arising for interest rate variations.
Examples of commodity or stock option pricing models accounting for uncertainties
in stochastic interest rates can be found in [Merton, 73], [Jarrow, 87]. Of course, as
described above, fixed income securities and related derivative instruments also require
modeling of the stochastic nature of interest rates. More generally, any parameter in the
stochastic model of the underlying asset that cannot be assumed predictable constitutes
a new source of uncertainty that cannot be neglected for long-dated instruments.

¢ Quality delivery options in futures contracts

The seller of a futures contract must deliver at expiration date some predefined underlying
asset. Sometimes, the contract specifies a series of acceptable underlying assets, in
which case the seller will deliver the cheapest one. In essence, the futures contract is
a multidimensional option on the minimum value of all the possible deliverable assets.
Consideration for the quality option is especially important in the case of interest rate
futures, where a number of bonds with different durations and characteristics can often
be delivered [Cheng, 87], [Boyle, 89].

March 1993 Digital PRL



Numerical Valuation of High Dimensional Multivariate European Securities 3

¢ Pricing of insurance contracts

The Arbitrage Pricing Theory can be applied to the pricing of insurance policies. In
particular, as described above, some life insurance policies can be viewed as pure interest
rate contingent claims (see e.g. [Stanton, 89]). More generally, option pricing theory
can be applied to the valuation of property/liability insurance contracts, where the strike
price of the option corresponds to the deductible of the insurance policy. There is a
growing academiditerature on these subijects, that can laedéd back to the work of
[Merton, 77] and [Smith, 79]. Other applications are presented in [Kraus and Ross, 82],
[Doherty and Garven, 86], [Cummins, 88] [Shimko, 92].

¢ Assets and Liabilities Management

Large corporations bear many different kinds of risks in the course of their activities.
Some of these risks can be hedged on financial markets. In particular, the currency
exchange risks and the interest rate risks can be hedged in many cases. For financial
institutions such as major banks and life insurance companies, this financial risk is
the only major source of uncertainty of the business. In order to minimize this risk,
the corporation must immunize itself as much as possible against variations of the
economic value of the firm as a function of the sources of uncertainty. This economic
value is simply the difference between the present value of assets and the present
value of liabilities. Given a model of the commercial and financial policy of the firm,
these present values can be computed as contingent claims on the economic variables
representing the risk (e.g. interest rates and currency exchange rates).

¢ Capital budgeting models in corporate investment decision making

When assessing the opportunity to invest in a new project, a financial manager must
determine théNet Present ValueNPV) of the project, i.e. the economic value of all the
possible future cash flows generated by the project. Several economic and commercial
variables are generally relevant for building a model of the probability distribution of
the future cash flows. In particular, when building the business plan for introducing a
new product to the market, one must estimate the possible evolutions of the parameters
associated with the product, as functions of the predefined marketing policy. These
parameters can be the market size, the market share of the company, the fixed and
variable costs, the expected price. Also, global economic variables such as gross
national product, rate of inflation, or interest rates may be relevant. According to
[Brealey and Myers, 91], the net present value can be computed as the expected value of
all future cash flows, discounted at the opportunity cost of capital. Computing the NPV
can be viewed as pricing a multidimensional contingent claim on the relevant economic
and commercial parameters. See [Mason and Merton, 85] for a review of applications
of option pricing theory to corporate finance.

1.3 European versus American instruments

For pricing purposes, financial assets can be divided into two majors classes. The first class is
that of assets whose future cash-flows cannot be influenced by decisions from the holder taken
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4 Jérébme Barraquand

after the purchase date. Most assets traded on financial markets belong to this class. We will
call European instruments all financial assets belonging to this first class. In particular, stocks,
bonds, futures contracts, European options, swaps, caps, floors, mortgage-backed securities are
European instruments. The second class is that of assets whose cash flows can be influenced
a posteriori by the holder. American options belong to this class. As another example, the
crediting policy of a Life Insurance company selling SPDAs greatly influences the present
value of the liabilities of the company. This crediting policy can be adjusted by the company
after signature of the contracts with the policyholders. Therefore, the liability associated with
the sale of SPDA can be viewed as an American security. We will call American instruments

all financial assets belonging to this second class.

Following the general theory of arbitrage pricing, the theoretical price of a European contingent
claim is the discounted expected value of its future cash flows under the so-called “risk-
neutral” probability distribution of the underlying economic factors [Harrison and Kreps, 79]
[Harrison and Pliska, 81], [Duffie, 88], [Karatzas and Shreve, 88]. Mathematically, computing
the arbitrage price reduces to computing an integral (sum) over the space of the underlying
economic factors. When the dimension of the space of the underlying economic factors is
small, standard techniques for numerical integration can be used. In some cases, the integral
can even be computed analytically (e.g. Black-Scholes formula). However, the computational
complexity of evaluating the integral is clearly exponential in the dimension of the space.

In this paper, we present efficient numerical techniques based upon Monte Carlo simulation
that enable us to compute accurate approximations of realistic European pricing problemsin a
time quadratic in the number of underlying economic factors. Combining classical techniques

of importance sampling with a new approximation method cadjeddratic resamplingwe

can compute the theoretical prices of the most complex instruments within tens of seconds
on a PC or a workstation, and within a fraction of a second on currently available massively

parallel supercomputers. The method has been tested for pricing problems with up to 100
underlying factors.

The price of an American claim is the maximum over all possible cash flow monitoring strate-
gies of the associated present values of cash flows. For example, the price of an American
option is the maximum over all possible early exercise strategies of the corresponding present
values. Since the space of cash flow monitoring strategies is generally huge, direct maximiza-
tion of the present value is rarely practical (see [Bossaerts, 89] for a discussion). However,
when the underlying economy is modeled as a Markov process, one can use the Bellman
principle of dynamic programming to compute the optimal monitoring strategy. American
options are typically priced using a discrete approximation of the dynamic programming
principle. This is the case in particular of the CRR model [Cox, Ross, and Rubinstein, 79]
for American stock option pricing. This approach becomes however impractical when the
underlying economic space has many dimensions, since the dynamic programming algorithm
requires a memory space exponential in the number of dimensions. This fact is known as the
“curse of dimensionality” problem [Bellman, 57] for dynamic programming. Unfortunately,
the techniques developed in this paper for European claim pricing do not generalize simply to
the case of American claims.
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Numerical Valuation of High Dimensional Multivariate European Securities 5

This paper is organized as follows. In Section 2, we relate our contribution to previous work
in Monte Carlo integration and asset pricing. In Section 3, we recall the usual assumptions
on the stochastic processes governing the evolution of securities prices, and the main result
of the Arbitrage Pricing Theory. In Section 4, we briefly review Monte Carlo techniques
for the numerical valuation of multidimensional integrals, and describe in particular modern
importance sampling methods. In Section 5, we present the method of quadratic resampling.
In Section 6, we present numerical results demonstrating the efficiency of the quadratic
resampling method when combined with appropriate importance sampling schemes. We also
describe a massively parallel implementation of our Monte Carlo procedure. Finally, in
Section 7, we discuss the capabilities and limitations of the approach.

2 Relation to other work

Good reviews of the Monte Carlo method and different variance reduction techniques such
as antithetic variables, covariates, stratified sampling, importance sampling can be found
in many sources such as [Hammersley and Handscomb, 64], [Zaremba, 68], [Haber, 70],
[Kalos and Whitlock, 86], [Decker, 91] and references thereof. [Stroud, 71]is acomprehensive
source of results regarding multidimensional Gaussian quadrature rules. All our experiments on
Gaussianrules are based on methods proposed in[Stroud, 71]. The additive importance sampler
presented in this paper is described in [Dantzig and Glynn, 89] and [Dantzig and Infanger, 91]
in the context of portfolio optimization and other operations research applications.

The application of the Monte Carlo method to option pricing was first presented in [Boyle, 77],

in the context of claims contingent to a single underlying asset. It has then been used by
several authors for the valuation of path dependent contingent claims. In particular, the
method has been used for pricing mortgage-backed securities (see [Schwartz and Torous, 89],
[Hutchinson and Zenios, 91]). Interestingly, the model described in [Schwartz and Torous, 89]
could be solved faster by direct finite-difference approximation of the arbitrage partial
differential equation. Indeed, although the problem is initially path-dependent as a function
of interest rates, it can be made path-independent by including two additional state variables
in the model. These new variables aggregate all the necessary information on past values of
interest rates. The final model is four-dimensional, which is still tractable for direct numerical
integration. This technique of including new state variables to remove path dependence is
described in much detail in [Stanton, 89]. Many problems of path-dependence can be solved
that way. The Monte Carlo method, although much slower than direct numerical integration
for problems with few dimensions, is very flexible and simple to implement. This is why

it has been used in many problems of path-dependence that could be solved faster by direct
numerical integration. Another application of the Monte Carlo method to the valuation of
Single Premium Deferred Annuities contracts is described in [Stanton, 89].

The valuation of options depending of several underlying assets has been studied by several
authors. [Brennan and Schwartz, 79] addresses the problem of pricing options under two
sources of risk by direct finite-difference approximation of the generalized Black-Scholes
equation. In this example the two sources of risk are the short term and the long term
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6 Jérébme Barraquand

interest rates. The approach is clearly limited to a few assets, since the memory space
requirements and the computation time are both exponential in the number of underlying
assets. [Boyle, Evnine, and Gibbs 89] developed a multinomial lattice method for pricing
multidimensional options, in the spirit of the approach outlined in [Cox and Rubinstein, 85].
According to the authors, the computation becomes very burdensome for more than two assets.
In fact, the multinomial lattice approach can be viewed as a finite-difference approximation
of the generalized Black-Scholes equation using an explicit Euler scheme and an appropriate
change of variables [Brennan and Schwartz, 78].

[Stulz, 82] presents an analytical solution to the problem of pricing a European option on
the maximum or minimum of two underlying assets. The analytical solution is generalized
in [Johnson, 87] to the case of an arbitrary number of assets, taking as given the cumulative
multivariate normal distribution function. [Boyle, 89] and [Boyle and Tse, 90] developed an
approximate method for the same problem. Although the problem is solved analytically
in [Johnson, 87], the approximate method does not require preliminary computation of the
cumulative multivariate normal distribution function. To the best of our knowledge, the above
problem of option pricing on the maximum or minimum of several assets is the only case
reported in the literature where solutions to high-dimensional (say, more than 5) problems
have been developed.

Our contribution to the problem of multidimensional contingent claim pricing reported in this
paper is twofold:

—First, we show that a proper implementation of the Monte Carlo method makes the problem
of European contingent claims pricing tractable, even when the number of underlying assets is
very large (up to 100 in our experiments).

—Second, we present a set of three techniques for improving the accuracy of the Monte Carlo
estimation.

¢ We introduce an original error reduction technique, quadratic resampling, that consider-
ably improves the accuracy of Monte Carlo integration. Quadratic resampling can be
used for any multidimensional integration problem, and is computationally practical for
integrals with up to a few hundred dimensions. It can be combined with classical vari-
ance reduction techniques such as importance sampling to further improve the accuracy
of the computation. It is shown that, given a random vector having arbitrarily many
coordinates and an arbitrary joint distribution, the expected value of any polynomial of
degree two or less in the vector coordinates is computed exactly when using quadratic
resampling.

¢ We introduce a deterministic Quasi-Monte Carlo method which does not require the use
of pseudo-random numbers. For integrals in spaces with few dimensions, this Quasi-
Monte Carlo sampling method is considerably more accurate than pseudo-random
sampling. This method combines the advantages of direct numerical integration in
low-dimensional spaces with those of Monte Carlo integration in high-dimensional
spaces.
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¢ We show that with currently available massively parallel technology, multidimensional
contingent claim prices can be computed two orders of magnitude faster than on a desktop
workstation. Therefore, since the accuracy of the Monte Carlo estimate is proportional
to the square root of the number of samples, the massively parallel implementation is
one order of magnitude more accurate than the workstation implementation for a given
computing time.

3 Arbitrage pricing of European securities

The arbitrage pricing theory is described in many textbooks. We refer the reader to [Duffie, 92]
for a comprehensive presentation.

3.1 Diffusion model of information process

We model the economy as a finite-dimensional vector of real-valued state vaigb)es
(x1(1), ..., %(t)), calledfactors representing all the information available to investors at
timet. By definition,X(t) is known at timet. However,X(t) does not usually give enough
information to investors to allow perfect forecasting of the future evolutions of security
markets. Therefore¥(r), r > tis a stochastic process.

By constructionx(t) is a Markov process, i.e. future values of vectoare independent of
past values of vectoX, conditionally to the knowledge of today. Indeed, if future values of
X were to depend not only o¥(t) but also on past values, this would mean %) does not
represent all relevant information at tijecontradicting its definition.

Sincex(t) represents all information available to agents at ttmie a frictionless market,
prices of securities must be deterministic functions of time{td. It is said that securities
are contingent claims on the state varia¥(¢).

For the sake of simplicity, we will assume that the information proo(=_($§; is a diffusion
process However, our results on Monte Carlo valuation described in the next sections apply
to more general types of stochastic processex(tl)‘ is a diffusion process, it is a solution of

a stochastic differential equation of the type:

dX = A(X(t), t)dt+B(X(t), t)dwW (1)
or equivalently:
n
Vie[Ln], dx=a(X,.. %, t)dt+> by(xe, ..., %, t)dw
j=1

The vectorA is called the drift of procesX. A is the derivative of the expected value of
X. The matrixI" = BB is the derivative of the covariance ¥ W = (wy,...,wy) is a
n-dimensional standard Brownian motion.
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8 Jérébme Barraquand

Often, the variables; are prices of securities available on the market, and are therefore strictly
positive processes. The expected increments and covariance of increments are then expressed
in relative values:

: dx s
Vi e [1,n], Pl i, (X2, -5 X, D)+ Vi (X, -, X, By
=1
with
Px = @i/, Vi = b/
The matrixV = (v; )(i,j)e[l,n]z is called volatility matrix, and the covariance of relative returns
is the matrixX = (Uij)(i,j)e[l,n]z:
T=w'

We have the following relationship:
Yij = OijXiX

3.2 European securities

A security is calleceuropean securitiff future cash flows cannot be influenced by decisions
from the holder taken after the purchase date (besides of course selling back the security).
Then the cash flows are only functions of time and information.

The cash flow generated by a European secdritipiring the time intervadlt, assuming’ is
held indefinitely, will be denoted big (X(t), t)dt.

If the priceC(t) of a European security is positive, we can define the instantaneous relative
cash flow rate odividend yieldas

e (X(1),1) = e (X(1), /(1)

The aggregate cash flow;(to,t) from the purchase datg to any future daté follows the
equation:
Fc(to,to) = 0, ch = fcdt = chdt

The totalgain process @, sum of the security’s liquidative value and the aggregate cash flow
is:

Ge(to, t) = C(t) + Fe(to, t)

Let uc denote the expected capital rate of retur@ of

dC

The expected total rate of return©fi.e. the expected rate of return of the total gain process
is:

BGe = pc +dc
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Numerical Valuation of High Dimensional Multivariate European Securities 9

The dividend yield of the money market accouhtcalled short term interest rate, is denoted
by r(X). If the proceeds of the money market account are continuously reinvested, the total
gain proces (to, t) follows the equation:

L(to,to) = 1, dL = r(X)L(to,t)dt
or equivalently:

Lo, ) =exp( [ t f(X(r)or )

to
3.3 Arbitrage Pricing

For any risk factok;, let e(C/xi ) denote theslasticityof price C to x;:

X 0C
e(C/x) = Cox

The major result of the Arbitrage Pricing Theory is the following. There exist numbers
A1, - .., An, called market prices for risk, such that for any secutitshe following relationship

holds: .
r+> e(C/x)A
i=1

Furthermore, if factok; is traded, the market price of risk for factgiis the expected total rate
of return onx; in excess of the riskless interest rate. In particular, ikadlre traded, we have:

n n
=Y e(C/x)(rc, —1) =D e(C/x)(ux +dyx —1)
i=1 i=1

Using the properties of diffusion processes, the above results lead to the following partial
differential equation, called Black-Scholes equation:

d’C
0% 0%;

oC

BT (de - r)C+i§:; g;(#m — A Z Oxox i (2)

If factor x; is the price of a traded security, the tegn — A; is simplyr — dy.. In particular, if
all factors are traded, Black-Scholes equation simplifies to:

_ac N ac d%C
3t (dc— )C+Za_ qu 22 3)('3)(]7'1 (3)

i=1

We see that the above equation does not depend on the market prices for risk. Therefore, we
can replace the information procesdy the so-calledisk-neutralinformation procesX for
which all market prices for risk are zero.
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10 Jérébme Barraquand

Using a theorem known under the name of Feynman-Kac Formula, we can represent explicitly
the solution of the above equation:

= ([ fe(X(r):7)
C(X(t),t) = E / —= 7 /d
(X()-1) t(t L)
whereE; represents the expectation under the fictitious risk-neutral information précess
Under suitable technical conditions, and using the linearity of the expectation operator:
© . [fe(X
c(x(.9 = [ (70( (T)’T))df
t

L(t, T)

In particular, if a security only yields cash flovig(X(t1),t1), . . ., fe(X(t), t) at discrete
datest; < ... < tx, we have for any timé < ts:

X(1), 1) = éét (%)

Therefore, the problem of computing the price of a security witHiscrete cash-flows
fe(X(t1),t1), ..., fe(X(t), t) reduces to that of computing the prices of each of khe
securitiey,, . . ., Cy, With respective single cash flovis(X(t1),t1), - . ., fe (X(t), t)-

In practice, securities only yield cash flows at discrete times. In the following, we will consider
without loss of generality a securigywith a single cash flovie (X(T)) at a givenexpiration

date T. Then,
cX(1),0) = E (%)

Let p(X) be the risk-neutral probability density ¥{ T) knowingX(t). We have:

() =, ({2055 pbxjax (4

L(t, T)

The practical problem of pricing a European security umdsources of uncertainty reduces
to that of computing the above n-dimensional integral.

4 Monte Carlo valuation

4.1 Numerical integration on the real line

We consider the problem of evaluating the simple integral:
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Numerical Valuation of High Dimensional Multivariate European Securities 11

on the compact intervad| b] for any functionf. When the above integral cannot be computed
analytically, the natural solution consists of approximating the integral by a weighted sum of
values off over a finite number of samples, ..., x™. The simplest quadrature rule is the
trapezoidal rule:

with )
Vie[l,m-1], X =a+ I—m(b— a)

In the above formulam is an integer chosen large enough for accurate approximation of the
integral.

More complex formulas such as Simpson rule or Romberg integration have a higher order of
accuracy for smooth integrands (see [Stoer and Burlisch, 80] for a review).

A technique of particular interest is that Gfaussian quadrature If the functionf is the
product of a polynomiagd of degree2m— 1 and some knowkernel W then we can find points
xL,...,xMand some weights?, . . ., w" independent of such that the integral:

w(@) = [ (ox= [ ow(x)a
wg—/a xx—/agx x)dx
is exactlyequal to the sum

g(x )w

m
i=1

4.2 Multidimensional integration

The basicidea underlying numerical quadrature generalizes simply to n-dimensional integration
problems. We consider an n-dimensional hypercHbes [al,b!] x ... x [a",b"] and the

guadrature problem:
I(f):/Hf(xl,...,xn)dxl...dxn (5)

For each coordinate;, we choosem samplesx!,...,x". This generates a lattice of
n-dimensional samples containing the x ... x m, points
V(j1, .. in) € [0,m] x ... [0, my], Xii-dn = (I .. xin)
We can find appropriate weightgt—In such that the sum:
) F(x2, ..., X )whaio
(le!]ﬂ)e[oyml]X[OJn”l]

approximates the integral For example, if we have for tH& dimension a one-dimensional
integration formula of the form:

)

m
j=1
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12 Jérébme Barraquand

we can build the Cartesian product rule with weights

wirin = T wh

i=1

In particular, ifry = ... = my, = m, the number of samplesi®". Therefore, evaluating the
sum is a problem requiring a computation time exponential in the number of dimemsions
Hence, direct numerical integration is impractical for high-dimensional problems.

Practical computation of a high-dimensional integral requires to choose fewer samples
XL, ..., XMand weightsv!, . ..,wM, such that the total number of samphss polynomial in
the dimensiom. If the samples and weights are chosen carefully, the sum

zM:f(x‘)w'

approximates the integral

Choosing appropriate samples and weights is in general a difficult (i.e. intractable) problem.
However, in many practical situations, the functidéris be integrated have specific properties
that make the problem tractable. In particular, security pricing problems of the type (4) lend
themselves surprisingly well to numerical integration.

The main idea described above underlying Gaussian quadrature can be extended to multi-
dimensional spaces. While classical Cartesian product rules require a number of samples
exponential in the dimension, there exist non-Cartesian rules requiring only a polynomial
number of samples. Let us consider a keWékl, .. .,xn) defined oveR". In general, it can

be shown (see [Stroud, 71]) that there exist a Gaussian rule exact for all furictiwstscan

be represented as the produc¥@fvith a polynomial of degreen, and that requires at most

i)

samples, number which is indeed polynomiahifior a givenm. For example, there exist

a formula exact for polynomials of degree twoRA requiring onlyM = (n+ 1)(n+ 2)/2
samples. In fact, for second degree polynomials, there even exist a formula with edly
samples in dimension In practice however, those rules have some negative coeffigibnts

and are thus very unstable numerically. Most quadrature rules with only positive coefficients
require at leas" samples, and thus cannot be used for very high dimensional spaces.
[Stroud, 71] presents a comprehensive review of results on generalized Gaussian quadrature
rules.

We experimented with the best rules advocated by [Stroud, 71] on typical asset pricing problems
in dimensions ranging frort to 10. In particular, we used the Cartesian product Gauss rule,
exact for any polynomial of degr&@multiplied by a Gaussian kern@l(X) = exp(—3(|X|[?).

This rule requires3" samples. In dimensiofO, this represents almo$0, 000 samples.
Although the rule is exact for any polynomial of degree 3, our experiments have shown (see
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Section 6) that it performs very poorly of typical asset pricing problems. We also used the
spherical Lobatto rule, exact for any polynomial of degree 5, and requifitg- 1 = 2047
samples in dimensiod0. The results, presented in Section 6, show that these Gaussian
guadrature rules are inadequate for asset pricing problems in more than a few dimensions.

A alternative way of choosing the samples is to generate them randomly, using a pseudo-
random number generator. The resulting integration technique, known under the name of
Monte Carlointegration, is quite widespread and simple to implement. We present in the next
subsection the general principle underlying Monte Carlo integration.

4.3 Monte Carlo method and importance sampling

We consider the hyperculbé= [0, 1]" without loss of generality, and a uniformly distributed
random vectoX overH. By definition, the expected value of the variab{e() is the integral
I(f) defined by equation (5):

EY(F(X)) = I(f) :/Hf(xl,...,xn)dxl...dxn

whereE" denotes the expectation under the uniform distribution. The principle of Monte Carlo
integration is to generatél independent random samplé, . .., XM of the vectorX and to
compute the empirical mean:

%i;f(xi)

By the law of large numbers, this sample mean is approximately equal to the in(égrhjr
M large enough.

This above crude Monte Carlo method converges very slowly even in dimension 1, and usually
does not converge in a reasonable amount of time in high-dimensional spaces.

One technique for accelerating convergence consists of performing an appropriate change of
variables in the integral. The technique is known in the literatureng®rtance sampling

Let us assume that we knompasitivefunctionf overH, such thaf approximates$ in some

sense, and that the integral:

1(f) = /Hf(xl, o Xn)dXg O
is easy to compute. Then, we can consider the probability distribution whose density is
_f
0!
Instead of generating uniformly distributed samples, we generate the samples

XL, ..., XM with the importance sampling densiy To do so, we assume that we can find a
change of variable i®" Y = (yi, .. ., yn) such that:

| de(dv/dX)| = g
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Therefore,
:/de: iqu= id\(: Eq(i)
H H ] Y(H) g q

whereE? denotes the expectation for the distribution of dengitiEquivalently:
(1) =1(NE(:)

In particular, whenf is positive, if we choosd = f, f/f is always equal tadl, hence
Eq(f/f) = land there is no need to generate any samples. However, the normalizing factor
I(f) = I(f) is precisely what we aimed at estimating in the first place. In pradtice)st be
chosen in such a way that it is approximately proportiondl tohile still significantly easier

to integrate tha.

There is no easy systematic way of choosing the appropriate importance sampling density
g. However, the integration problem is often naturally expressed in such a way that
proportional to a special probability densjiy

f=gp

For problem (5),p is the function constant over the hypercube density of the uniform
distribution. In general, when the problem at hand is to compute the expected value of a
random variabl@(x) whereX has densityp, we havef = gp. pis then called thenatural
importance samplinglensity, and the method of importance sampling simply consists in
simulating Xwith its natural probability distributiop.

For asset pricing problems of the form (4), the risk-neutral probability depém) of the
information procesX is often a good candidate for importance sampling. We generate samples
X1, ..., XM with the risk neutral probability distribution, and approximate the asset price by
the average discounted cash flow:

< E 3 EX

:l

C(X

§|H

This technique is called risk-neutral importance sampling.

Recently, [Dantzig and Glynn, 89] and [Dantzig and Infanger, 91] have proposed the method
of additive importance sampling, an interesting paradigm for choosing importance sampling
functions. They consider a natural probability density funcp@é) in R", which makes the
coordinates independent two by two:

:lf[lpi(x')

The corresponding distribution could be for example the uniform distribution over an hypercube
H (p = 1/(bi—a&)) or the multivariate standard normal distributipn exp(—x2/2) /+/2r).
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We consider the problem of computing the integral:
() = [ F(x)p(x)ax

The method of additive importance sampling consists of identifyingositive functions
f1(x1), - - ., fa(¥n) such that their sum

f(xl,...,xn)zgn:fi(xi)

i=1

approximate the functioh. The integral of is easier to compute than thatfgfsince it is a
sum of monodimensional integrals:

1o(F) = ; [ : (0 (X)dx

Then
o) = [ foix=3 [ %fmp(x)dx

The problem reduces to that of computing each ofitirgegrals:
, i f(X)
L], I = / 22t (3 )p(X)dX
VIE[ 7n]7 R”f(X) I(Xl)p( )

Due to the particular structure of the above integral, it is easy to generate samples with a
density proportional t&(x )p(x). Then, iff is actually a good approximation fifthe additive
importance sampler will converge substantially faster than the simple natural importance
sampler. The importance sampling density is

q = pf/Ip(F)

It is the product of an additive function and of a multiplicative function of the variables
X1,..49 Xn-

4.4 Quasi-random sampling

Monte Carlo methods combined with appropriate importance sampling schemes are exper-
imentally efficient. However, generating the samples randomly is not necessarily the best
way of obtaining an accurate quadrature rule. Indeed, the efficiency of Monte Carlo methods
does not depend on the random nature of the samples, but on their equidistribution properties.
Deterministic technigues for generating samples often perform better than random techniques.
For historical reasons, deterministic techniques for choosing the samples are@adsd
Monte Carlotechniques. There is a fairly large literature on Quasi-Monte Carlo methods, that
we will not present here. We refer the reader to [Zaremba, 68] and [Haber, 70] for a review.
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We developed a very simple method for generating deterministically equidistributed samples,
that happens to perform very well in practice. For low dimensional problems (say, problems
in dimensiom < 5), this approach is considerably more efficient than classical methods based
upon random number generation. On higher dimensional problems, the method yields results
similar to that of classical Monte Carlo methods. Hence, we can get the best of both worlds:
reasonable efficiency for high-dimensional problems, and high efficiency for low dimensional
problems.

We consider again problem (5). We assume that an appropriate importance samplingdensity
has been chosen. After the corresponding change of vai@llesuch thatde{dY/dX)| = q,
we are faced with the following problem:

| = dy
(9) /[O,un g

with g = f/qg. Instead of generating randomly uniformly distributed samples, we choose
to sample then-dimensional hypercube deterministically. We first choose an appropriate
quantization step for each coordinate, sdy= 1/2* for a positive integek. Since we make

our calculations on a 32 bits computer, a simple choi¢ess 32. A quantized poin¥ in the
hypercube is then represented by a sequennekdfits integers(yl, . .,yn). We consider the
kn-bits integer:

L(Y1s---»¥n) ZyZ"(' 2

For each numbey;, we can write the representatlonypﬁn base2:
k .
= Z 34 Zj_l
=1

where;/; € {0,1}. Then:

n k
Y1, B ,Yn Z yizk(l—l)ﬂ—l

i=1j=1

The mappingd. is a one-to one mapping from the quantized hypercOb2{[" onto the integer
interval [0, 2"4. Intuitively, this mapping corresponds to scanning the quantized hypercube in
lexicographicorder.

Alternatively, we can consider the mapping?eanoorder, defined as:

k n
Y1, y ,Yn Z ylzn(i—l)ﬂ—l

j=1i=1

If we consider the variables

Vj € [1,K], Zyz' !

i=1
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spanning the hypercub8,2"[¥, we get:
k

P(y,-.-,¥n) = 37270~

j=1

Hence, the Peano mapping can be viewed geometrically as a one-to-one mapping between the
hypercube @, 24" and the hypercub®]2"[¥. In our experiments, the lexicographic mapping

L and the Peano mappimygave similar results. Fan = 1, both the lexicographic and the
Peano scan reduce to the identity function over the intefyal.

Given any of those two mappings, shywe can now construct a sampling of the hypercube
by first sampling regularly the intervad[2"¥, and then taking the inverse of the mapping.

Given the desired number of sampMswe perform the integer division:
2= MA+B
with B < M. Then, we sample regularly the interval 2" with the M numbers
Vre[l,M], Y, =TA
The corresponding samples in the hypercu@'[" are theM points(yy, . . ., y;,) verifying
L(YL, - Yh) =Y =TA

If M is properly chosen, the samples are correctly distributed over the hypercube. In practice,
we chooseM of the formM = p*, wherep is a prime integer different frorg, sayp = 3.
More advanced number theoretic methods of this type are described in [Stroud, 71].

In dimensionn = 1, the sampling is simply a regular sampling of the interv@|1].

Hence, the quadrature formula is almost identical to a regular trapezoidal formula, much

more accurate than a formula generated by a random sampling. More generally, this quasi
Monte Carlo method has the advantage of not introducing spurious randomness in low

dimensional integration problems. For high-dimensional problems, experiments have shown
that it performs similarly to classical Monte Carlo methods.

5 Quadratic resampling

We consider again the problem of computing the integral:

(1) = [ f(X)p(x)ax

wherep is a natural probability density function, afichny integrable function. In particular,
the general quadrature problem (5) is a special case of the above proliiemg the uniform
density over the hyperculdd. If we consider the random vectot with densityp, this is
equivalent to the problem of computing the expected value

Ip(f) = E(f(X))
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We assume that the first order moments have been precomputed (either analytically or
through Monte Carlo simulation, using one of the importance sampling techniques described
above).

Vie L, lo(x) = E(x) = [ xp(X)ax

The vector whose coordinates &gx; ) is denoted=(X), and called expected value Xf We
also assume that tm& second order moments have been precomputed.

v(i,j) € [L,n)% 1p(xx) = E(xx) = /Rn X% p(X)dX

The matrix of second order moments is dend&€®X"). By definition, the covariance matrix
of Xis:

K = E((X — E(X)) (X~ E(X))T) = E(XX") ~ E(X)E(X)T
Kx is a non-negative symmetric matrix. Without loss of generality, we will assumétisat
positive. Indeed, iKx is degenerate, we can always diagonalize it in an orthonormal basis,
perform the corresponding change of variables in the intdgraind discard all degenerate
dimensions. Then, the above quadrature problem is transformed in a lower dimensional
non-degenerate quadrature problem.

SinceKy is non-negative symmetric, we can find a square root, i.e. a matrix degdtgd

such that: .
Kx — v Kx\/ Kx

This can be done either throudty decomposition, or through diagonalizationkf in a
orthonormal basis. Sind€y is positive,./Kx is regular (i.e. has an inverse).

We then consider a sequences of samplks. ., XM, generated either deterministically or
randomly. For example, they can be generated randomly so as to follow the distribution
of densityp. In general, we can choose any appropriate importance sampling dgrisity
generating the samples. Then, we can define the empirical mean approximating the integral

Ip(f) as:

@:Zf(x‘)w"

M
i=1
with

. P 1 p(X)
W= . . .
Vie[l,n], Ejle p(xj)/q(xj) q(XI)

The normalizing factor fow'’s has been chosen so as to have:

M .
dYw=1
i=1

In particular, the empirical mean is:

M
X=>3 Xw
i=1
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We can define similarly the empirical covariance:

Kx = (X—=X)(X=X)T=XXT - XX'

More explicitly:

Kx =D (X =X)(X' = X)Tw =D XX 'w - XX
If the samples are generated randomly, the law of large numbers applies. Therefore, for a
sufficiently large numbeM of samples, the empirical meahand the empirical covariance
Kx will be arbitrarily close to the real mea®(X) and the real covariandéx. Therefore,
since the set of regular matrices is open, the empirical covariégaaust be non-singular
for M sufficiently large. If the samples are not generated randomly, there exist deterministic

sampling techniques guaranteeing the same convergence property of the empirical mean and
covariance to the real mean and covariance, and the same result applies.

SinceKy is non-singular, its square rogfKx is also non-singular.
We define the gain matrix
-1
H= hV4 Kx\/ Kx

and the new random variable:
Y = H(X - X) +E(X)
We consider thé1 samplesy’ = H(X' — X) + E(X). For this particular sampling, we get:
M . .
Y=> YW =E(X)
i=1

Similarly:

Ky =(Y=Y)(Y=Y)T = (H(X = X))(H(X = X))T = HKxH"
Using the expressions above farandKy as products of square root matrices we get:
Ky = Kx

Hence, the empirical first and second order moments using the safi@es exactly equal
to the real first and second order momentsxof In particular, the empirical mean of any
polynomialf of degree two or less in the variabbes . . ., x, verifies:

T7) = YY) = E(1(0)

We can state:
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Any numerical quadrature formula generated through quadratic resampling is
exact for any polynomial of degree two or less

In the above sense, the method of quadratic resampling can be viewed as a particular Gaussian
integration rule of degree 2, following the terminology of [Stroud, 71].

The method of quadratic resampling can be summarized as follows:

1) Precompute the expected vaIEéX) and covariance matriKy of the random vectoK
with densityp, if they are not available in analytical form.

2) Choose an importance sampling densj(y() well-suited to the problem at hand, the
simplest choice being = p.

3) Sample the random vectdf using any available technique, i.e. Monte Carlo sampling
or deterministic sampling, to obtain a sequente...,XM. Define the empirical
guadrature formula:

1) =3 1(X)w

M
i=1

Compute the empirical meax and empirical covariance matrky. ChooseM large
enough so thay is non-singular.

4) Compute the matridd = /Kx Ky

5) Compute the modified samples = H(X' — X) + E(X), to obtain the modified empirical
guadrature formula:

W:Zf(w’)w’

M
i=1

6 Experimental results

6.1 A testcase

We implemented the different numerical quadrature schemes presented above on a test case
described below.

We consider two real numbees and p with —1/(n - 1) < p < 1, and the non-negative
symmetric matriX = (k) ijye[1n2 Such that

vi e [L,n], ki =o?

and
V('a]) € [17 n]zai #J: kij = p0_2
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We consider a random vectot = (xi,...,%)" € R, following a multivariate normal
distribution with zero mean and covariance makix

Let us assume that is of rankk < n, and let us compute a square raobdf K, i.e. an x k
matrix such that:
K =wVT

We consider the random vector
z=(V'v)"lvTx
By constructionX = VZ, andZ follows a k-dimensional standard normal distribution.

We can always takk = n by completing the matri¥ with columns of zeros, and consider
the quadrature problem:

1(f) = E(f(X)) = /Rnf(x)px(x)dX: /Rnf(VZ)pz(Z)dZ

wherepx andpz are the densities of andZ. Hence:

I(f) = /Rn f(v2) —eXp(;!_iHZ/ 2) 47

We choose the particular expressionfor
n
f(X, .. %) = rirl%xexp(xi)

With this choice, we obtain a three parameters quadrature problem:

I(n,o,p) = /Rn maxexp() Viij)eXF(_?anl 312) iy .z,
j=1 d

The above problem admits the following financial interpretation. We consider a stock market
includingn dividend-free stocks with priced, . . ., S, following a jointly lognormal diffusion
process with any arbitrary expected yearly retyrngnd a covariance matrix of yearly returns
equal toK. We have:

Vie[1,n], dS—SI,uidt+ZVijdV\4
j=1

whereW = (wy, ..., wn)T is an n-dimensional standard Brownian motion. It can be shown
that the solution of the above equation is

vie[L,n], S(t) = S(0) exp(ui - mi/z)t+ivi,-w,-(t))

j=1

Usingki = o2 and settingq(t) = 3L vjwi(t), we get:
S(1) = 5(0) expl (i — o*/2)t) exp(x (1))
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We assume that the annualized interest raite constant and known at tinf® Therefore,
the risk-neutral information process is obtained by replacing;&lin the above equations
by r. If we consider the pric€ at time zero of a contingent security with a single cash flow
9(Sy, ..., S) at dateT, the Feynman-Kac formula yields:

exp(— Tke17/2)

or® dz . ..dz (6)

c= /Rn exp(—rT)a(Sy, ..., S)

with

5 = 5(0) exp((r — 02/2)T) exp«gvmﬁ)

If the contingent claim is an option with zero strike entitling its holder to choose any one of
then securitiesS,, . . ., S, at expiration date, we have:

o(Sy, -, S) = maxg

Indeed, any clever investor will choose the security with the highest market value at.time

Finally, if we assume that the initial prices of the stocks at time zero are all eqlizhhal that
the cash flow is exactly one year her{de= 1.0), we get:

S = exp(r — ¢%/2) exp(x)

Hence:

C= eXF(—UZ/Z)I(n, U,p)
The above quadrature problehfn, O',p) can be interpreted as an option pricing problem.
Although this problem can be solved analytically usingrisdimensional multivariate normal

distribution function (see [Johnson, 87]), it is an appropriate testbed for numerical integration
methods.

We tested four different Monte Carlo procedures, to be described below, on the above test
case for different values of the parameters. All the four methods use importance sampling.
Indeed, for large values af, a crude Monte Carlo method using uniformly distributed
samples,, .. ., z, would take an astronomical number of samples to converge. The simplest
importance sampler is the Natural Importance Sampler (NIS), which consists of generating
7, ..., Zyfollowing an-dimensional standard normal distribution. Since the normal distribution
has the property of central symmetry at the origin, we also use in the four methods the technique
of Antithetic Variables (AV). Instead of generating randorMysamples, we generatd/2
samplesZ?, ..., ZM/2 and take for the remaining samp@4/2*1, ..., ZM the opposite values
~7,...,—=ZM/2 (M is assumed even for simplicity). The technique of antithetic variables
applied to normal samples guarantees in particular that the empirical first order moments (i.e.
the expected value @) are exactly equal to their theoretical valuésére). If the functiorf

has some amount of correlation with the coordinatethe technique will reduce the variance

of the samples, and thus improve the accuracy of the Monte Carlo estimate. This is the case
in particular for the functiori chosen in our test case. In general, it is the case for most asset
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pricing problems, since the cash-flows generated by securities are often monotonous functions
of the underlying economic factors.

We now describe the four methods:

Method 1: AV-NIS Method 1 is simply the one just described. It uses the technique of
antithetic variables, and uses the natural importance sampler.

Method 2: AV-NIS-AIS Method 2 uses in addition to Method 1 the Additive Importance
Sampler (AIS) described in the previous sections. The funcfjatesen are:

Vie[Lnl, fi(z)=expviz)

Method 3: AV-NIS-QR Method 3 uses in addition to Method 1 the technique of Quadratic
Resampling (QR). Since the moments of the multivariate normal distribution are known
analytically, we do not need to precomp&g) andK:

E(z) =0, Kz=I,
wherel,, is the identity matrix irR".

Method 4: AV-NIS-AIS-QR Method 4 uses in addition to Method 2 the technique of
Quadratic Resampling.

These four methods were tested on the quadrature prolhiie,m, p) for different values of
the parameters. All tests used a sample Blze 4000 Table 1 shows the standard errors for
the four methods in dimension= 10usinge = 1 and four different values of the correlation
parametep = —1/9,0,1/2,1. The values = 1 corresponds to a volatility af00 percent
per year for each of the 10 pric8s, ..., Sio.

Table 2 shows the standards errors, again in dimemsiorl0, usinge = 0.1. This represents
a volatility of 10 percent per year for each of the underlying assets prices.

The results presented in Tables 1 and 2 illustrate the relative efficiency of the different
methods on 10-dimensional problems. For problems with high volatisty= 100%),
guadratic resampling (Method 3, AV-NIS-QR) reduces the error by a factor ranging from 2
(low correlation) to 3 (high correlation) (as compared to Method 1, AV-NIS). The method of
additive importance sampling also reduces the error by a factor of 2 (low correlation) to 1.2
(high correlation) (Method 2 / Method 1). Interestingly, the error reduction power of quadratic
resampling and additive importance sampling carcbmbined(in Method 4), yielding an

error reduction factor of approximately 4 over Method 1. This corresponds in terms of
computing time to a speedup of 16 for a given accuracy. The quadratic resampling method
works best on problems exhibiting a high correlation between varigbtes0.5, while the
additive importance sampling method works best on problems with low correlation between
variables.
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| p [1(10,1.0,p) | Method 1| Method 2| Method 3| Method 4|

-1/9 | 5.91 0.0734 0.0421 0.0423 0.0260
0.0 | 5.62 0.0697 0.0311 0.0424 0.0204
0.5 | 4.18 0.0534 0.0219 0.0287 0.0125
1.0 | 1.65 0.0265 0.0213 0.0083 0.0054

Table 1: Standard errors in dimension= 10for ¢ = 100

| p ]1(10,0.1,p) | Method 1| Method 2| Method 3 | Method 4 |

-1/9 | 1.178 0.00109 | 0.00104 | 0.00050 0.00051
0.0 | 1.168 0.00102 | 0.00097 | 0.00047 0.00047
0.5 | 1.119 0.00070 | 0.00065 | 0.00032 0.00032
1.0 | 1.005013 0.00016 | 0.00013 | 0.00000048 0.00000032

Table 2: Standard errors in dimensior= 10for ¢ = 10%

For lower volatilities &§ = 10%), the additive importance sampler performs poorly. The
method of quadratic resampling yields an error reduction factor ranging from 2 for problems
with low correlation to several hundreds for problems with high correlation. Indeed, the
cash-flow function is closer to its second order Taylor expansion for lower volatilities. Since
guadratic resampling yields exact results for functions that are equal to their second order
Taylor expansion, it is likely to give more accurate results for problems with loviilrtoés.

All calculations were performed on a DECstation 5000 model 200 desktop workstation, using
a MIPS R3000 microprocessor at a clock rate of 25 Mhz. All calculations were performed
in double precision floating point arithmetics. The simulation program was written in the

C programming language, and compiled without any optimization. The resulting computing
times for each run of 4000 samples were just below 1 second.

Tables 3 and 4 present the same results in dimensien5. The conclusions are similar.

For high volatilities, quadratic resampling reduces the error by a factor ranging from 2 (low
correlation) to 5 (high correlation). When combined with additive importance sampling,
the total error reduction factor ranges from 5 to 10, corresponding to a reduction factor in
computing time ranging from 25 to 100. For lower volatilities, the additive importance sampler
performs again poorly. The method of quadratic resampling yields an error reduction factor
ranging from 5 for problems with low correlation to several hundreds for problems with high
correlation. In Table 4, the error reduction of Method 4 over Method 1 ranges from 5 to 1000,
corresponding to a reduction factor in computing time ranging from 25 to 1 million. The
resulting computing times fagach run of 4000 samples were about 1/3 of a second.

Finally, Tables 5 and 6 present results in dimengionr 100. For high volatilities (Table
5), quadratic resampling reduces the error by a factor ranging from 1.25 (low correlation) to
3.5 (high correlation). When combined with additive importance sampling, the total error
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lp [1(510,p) | Method 1| Method 2| Method 3| Method 4]

-1/4 | 4.39 0.0719 0.0365 0.0230 0.0141
0.0 | 4.07 0.0594 0.0186 0.0255 0.0088
0.5 | 3.29 0.0448 0.0102 0.0205 0.0058
1.0 | 1.65 0.0284 0.0183 0.0067 0.0028

Table 3: Standard errors for= 5 ande = 100%

| p [1(501,p) | Method 1| Method 2| Method3 | Method4 |

-1/4 | 1.141 0.00133 | 0.00126 | 0.00027 0.00027
0.0 | 1.126 0.00117 | 0.00110 | 0.00024 0.00024
0.5 | 1.090 0.00079 | 0.00073 | 0.00017 0.00016
1.0 | 1.005013 | 0.00017 | 0.00011 | 0.00000040 0.00000017

Table 4: Standard errors for= 5 ando = 10%

| p [1(100,1.0,p) | Method 1| Method 2| Method 3| Method 4 ||

0.0| 13.58 0.1235 0.0984 0.0994 0.0818
05| 794 0.0850 0.0694 0.0486 0.0422
10| 1.65 0.0301 0.0294 0.0087 0.0084

Table 5: Standard errors far= 100ande = 100%

| p ]1(100,0.1,p) | Method 1| Method 2| Method 3 | Method 4 |

0.0| 1.286 0.000901| 0.000887| 0.000698 | 0.000696
0.5| 1.1975 0.000588| 0.000579| 0.000457 | 0.000456
1.0 | 1.005013 0.000169| 0.000165| 0.00000051 0.00000049

Table 6: Standard errors for= 100ande = 10%
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reduction factor ranges from 1.5 to 3.6, corresponding to a reduction factor in computing time
ranging from 2.3 to 13. For lower volatilities, the additive importance sampler performs again
poorly. The method of quadratic resampling yields an error reduction factor ranging from 1.3
for problems with low correlation to several hundreds for problems with high correlation. In
Table 6, the error reduction of Method 4 over Method 1 ranges from 1.3 to 350, corresponding
to a reduction factor in computing time ranging from 1.7 to 100,000.

The resulting computing times fogach run of 4000 samples were about 1 minute and
10 seconds. In general, the computation time is quadratic in the dimensigince the
computation of each sample requires to compute the transforn¥tioivZ, andVis an x n
matrix.

To illustrate typical computing time in practical cases, let us consider the computation of
I(lO, 1.0, 0.0) using Method 4. The result, presented in Table B.@&2, and has a standard
error of approximately0.02. Using the central limit theorem, we see that the accuracy for
a confidence level 099.995% is approximately0.08 (4 times the standard error). In order

to make the last digit significant, an accuracyO0dd1 (8 times higher) is required. Hence,

the computation time fo0.01 accuracy would be& x 8 = 64 times higher. The result
would be obtained in about 1 minute of computation on the same hardware platform, with
256000samples. With Method 1, the same result would be obtained in about 12 minutes of
computation, using more than 2.5 millions of samples. Not surprisingly, Table 2 shows that
problems with lower volatility require much less computing time. Even for low correlations,
three digit accuracy is achieved in a small fraction of a second, and four digit accuracy in a
couple of seconds (the error margin of Method 3der 0.0is about4 x 0.00047= 0.002for

a confidence level d¥9.99%% using only 4000 samples, i.e. a computation time of 1 second).

In general, the computing time may vary from several minutes to a fraction of a second,
depending of the characteristics of the covariance matrix, and on the accuracy required. Since
the accuracy of Monte Carlo methods is proportional to the square root of the number of
samples, getting one additional significant digit requires a computing time 100 times longer
on a given hardware platform.

6.2 Comparison with classical Gaussian rules

We implemented several classical Gaussian integration rules proposed in [Stroud, 71] and
experimented with them on the above test case.

We present below some results for 2 different rules, designed for approximating integrals of

the form: ]
1(f) = /Rnf(zl,...,zn)exF(_\%:ZL;nl2‘3/2)dzl...dz1

Gausslis a classical Cartesian product rule of the form described in Section 4.2. It is exact if
f is a polynomial of degree 3.

In dimension 1, the three sample points akg3, 0, andy/3. The corresponding weights
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| p [1(10,1.0,p) | Gaussl| Gauss2| Stdev Method 4

-1/9 | 5.91 5.53 5.46 0.034
0.0 | 5.62 4901 |5.35 0.028
0.5 | 4.18 411 3.64 0.018
1.0 | 1.65 1.64 1.64 0.0078

Table 7: Values computed from Gaussian quadrature rales 10, ¢ = 100%)

| [1(10,0.1,p) | Gaussl | Gauss2 | Stdev Method 4

-1/9 | 1.178 1.180 1.165 0.00065
0.0 | 1.168 1.159 1.142 0.00061
0.5 | 1.119 1.120 1.096 0.00041
1.0 | 1.005013 1.005013| 1.005013| 0.0000004

Table 8: Values computed from Gaussian quadrature rales 10, ¢ = 10%)

arel/6,2/3, and1/6. In dimensiom, the total number of samples is theref@fe

Gauss2is a so-called spherical Lobatto rule (see [Stroud, 71]). Itis exact for polynomials of
degree 5. The total number of samples in dimensi@2™?! — 1

In dimensionl10, the number of samples required for the Cartesian product rule Gaussl is
59049 The number of samples required for the spherical Lobatto rule Gaud827sResults

are presented in Tables 7 and 8. In order to compare these Gaussian rules with the Monte
Carlo method, the last column of the tables shows the standard error of Method 4 above, for
the exact same number of samples as the Lobatto rule, i.e. 2047 in this case. The results
from Table 7 show that both Gaussian rules are very inaccurate for pricing problems with high
volatilities and low correlations. The error is in most cases ®%r and exceed3( on

several examples, while the standard error of Method 4 remains Qridérfor 2047 samples.
Correct results are obtained only on problems with very high correlation. Results in Table
8 indicate that Gaussian rules perform better on problems with low volatilities, but are still
not nearly as good as Monte Carlo methods for a given number of samples. The error of the
Lobatto rule ranges frori% to over2%, while the error of Method 4 remains bel@®\5%

with the exact same number of samples. The Cartesian product Gauss rule Gaussl is about as
accurate as Method 4 for low vailities, but it requires 30 times more samples.

Tables 9 and 10 present results in dimengiorr 5. Gaussl require243 samples, while
Gauss2 require83 samples.

Results are presented in Tables 9 and 10. As before, the last column of the tables shows
the standard error of Method 4 above, for the exact same number of samples as the Lobatto
rule, i.e. 63 in this case. The error reported in Table 9 (high volatilities) ranges3%6m
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lp |1(510,p) | Gaussl Gauss2| StdevMethod 4

-1/4 | 4.39 4.30 4.35 0.116
0.0 | 4.07 3.78 3.87 0.077
0.5 | 3.29 3.30 2.93 0.048
1.0 | 1.65 1.64 1.64 0.020

Table 9: Values computed from Gaussian quadrature roles %, ¢ = 100%6)

lp [1(501,p) | Gaussl | Gauss2 | Stdev Method 4

-1/4 | 1.141 1.115 1.111 0.0025
0.0 | 1.126 1.113 1.108 0.0022
0.5 | 1.090 1.086 1.073 0.0015
1.0 | 1.005013 | 1.005013| 1.005013| 0.0000001

Table 10: Values computed from Gaussian quadrature mles%, o = 10%)

to 10% on most examples, while the standard error of Method 4 remains @ftidor 63
samples. Results in Table 10 indicate that Gaussian rules perform better on problems with
low volatilities, but are still not nearly as good as Monte Carlo methods for a given number of
samples. The error of the Lobatto rule ranges fitvn to 2%, while the error of Method 4
remains belowd.22% with the exact same number of samples.

Of course, these Gaussian rules cannot be implemented in dimensiof00, since they
would require an astronomical number (01€f°%) of samples.

In conclusion, we see that classical Gaussian quadrature rules do not stand the comparison
with the best Monte Carlo methods, even on relatively low-dimensional problema (e.6).
Gaussian integration methods are only useful on problems with very few dimensiofdd¢say

3).

6.3 Massively parallel implementation

We implemented the Monte Carlo procedure on a DECmpp 12000 massively parallel deskside
workstation with 4K (4096) processors. We present below comparative computing times with
a DECstation 5000 model 200 workstation.

We consider again stocks with a covariance matrix of relative returns of the form described
in the previous subsection. The price of any claim contingent tontstecks with a single
cash-flow date is computed from formula (6).

We considered several examples for the cash-flow fungfiofhe first example was that of
an option on the best performance of thetocks, with a non-zero strike pri¢¢ Then, the
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functiongis:
(S S) = max 0, nxs; — H) (7)

The second example was that of an option on a market index (CAC 40) representing the
weighted average of = 40 stocks:

40
S, S0) = max(o,zais _ H)

i=1

Several other forms of cash-flow functions were also tested such as the quality delivery option

of futures contracts: .

oS,...,.S) = rirlins
We implemented for the above pricing problem the Method 1, AV-NIS, on the DECmpp.
The program was written in the MASPAR MPL language, a parallel extensigh of he
parallelization paradigm for Monte Carlo quadrature algorithms is particularly simple on such
SIMD (Single Instruction Multiple Data) computers. It consists of distributing on different
processors the computation of different samples, and finally adding the results obtained by all
processors. We give below experimental computing times for the first example of cash flow
function. The parallelization speedups obtained for all other examples were strictly similar.
In this first example using functiof¥), the initial prices of then = 10 stocks were all set to
S(O) = 40.0 dollars, the strike price wald = $40.0, the interest rate was set to= 7%,
the time to expiratiom = 200days. The volatilitye was set ta30%, and the correlatiop
to 50%. In order to reach &/2 cent accuracy at a confidence leveld®995%, we used 16
millions of samples. The computed price was= $12.26.

The computation time on the 4K DECmpp was 62 seconds, using single precision floating
point arithmetics. In comparison, the computation time for the same problem on a DECstation
5000-200 in single precision and using all available compiler optimizations was 31 minutes.
This represents a speedup factor of 30. In double precision, the speedup was 23. We estimate
that the speedup on a full-size (16K) DECmpp 12000 would be exactly four times the speedup
obtained on the 4K DECmpp, since the Monte Carlo method can be fully parallelized. Then,
the speedup factor would be about 90 in double precision and 120 in single precision. These
figures are clearly not specific to this particular example, and apply in fact to any Monte
Carlo integration problem where the number of samples required is higher than the number of
available processors.

We can conclude that the massively parallel implementation yields a speedup factor of roughly
two orders of magnitude for most Monte Carlo integration problems.

Method 3, AV-NIS-QR, parallelizes exactly in the same fashion after precomputation of the
modified samples. For the particular example above, the error reduction factor using quadratic
resampling wag.3, yielding a speedup factor of more thawwver Method 1, AV-NIS.

We also compared Method 1 and Method 3 on the same example in dimensiak0Q, all
other parameters being unchanged. The call pric®28. The speedup factor obtained
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through quadratic resampling is orilys in that case. Using Method 3 with 4000 samples, the
standard error i9.053 and the computation time is about 1 minute on a DECstation 5000.
The same computation on a 4K DECmpp 12000 would be done in about 2 seconds.

Finally, we compared Method 1 and Method 3 on the same example in dimensidn The

call price isC = 9.70. The speedup factor obtained through quadratic resampling is 12. Using
Method 3 with 4000 samples, the standard err@.@24. The computation time is about 1/3

of a second on the DECstation, and could be done in 1/100 of a second on the DECmpp.

7 Conclusion

In this article, we described a systematic numerical technique for pricing arbitrarily complex
European securities. Besides its obvious applications to trading and hedging in organized
capital markets, European security pricing has many important applications in various areas
of risk management such as assets and liabilities management and corporate investment
decision making. Using this technique, we were able to compute the prices of the most
complex European instruments in a few tens of seconds on a workstation, and within a
fraction of a second on a massively parallel computer. We have shown that this technique
outperforms previous general purpose European security pricing methods, either in the range
of applicability, or in theaccuracy obtained for a given computation time.

Our approach essentially relies on the well known Monte Carlo method, combined with
appropriate importance sampling schemes and a new error reduction technique, that we call
quadratic resampling We have shown that the multidimensional quadrature problem is
solved exactly for any polynomial of degree two or less when using quadratic resampling.
When tested on typical multidimensional asset pricing problems, quadratic resampling yields
significant error reduction. The error reduction factors ranged from 1.2 to 1000 in our
experiments. The typical error reduction for problems in up to 10 dimensions was about 3,
corresponding to a speedup factor of roughly one order of magnitude. The method is readily
applicable to any European asset pricing problem involving an arbitrary number of variables.
We have successfully implemented the method for problems with up to 100 dimensions.
Besides its applications to security pricing, the method could be applied to any problem where
the computation of high-dimensional integrals is required. Examples of such problems can
be found for example in failure rate analysis of mechanical and electronic systems, and in
the simulation of complex physical phenomena such as those occurring in nuclear physics,
mechanics, and fluid dynamics.

We feel that the method presented in this paper and the experimental results obtained with
it make it possible to realistically envision the use of multidimensional stochastic models for

practical real-world quantitative risk management problems. This capability of computing

the joint influences of several tens of risk factors such as interest rates of various terms in
different currencies, equity of various kinds, and any other relevant economic variables, may
dramatically increase the competitive advantage of quantitative methods over more traditional
analysis techniques. An area of particular interest is that of estimating precisely the economic
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value (net present value) of firms such as banks and insurance companies from a quantitative
analysis of their balance sheet. However, this numerical pricing method does not generalize
simply to American asset pricing problems, which cannot be reduced to multidimensional
guadrature problems. Extensions of this approach for American asset pricing are left for future
research.
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